
behave Documentation
Release 1.2.6

Benno Rice, Richard Jones and Jens Engel

2020-12-15

Contents

1 Contents 3
1.1 Installation . 3
1.2 Tutorial . 4
1.3 Behavior Driven Development . 12
1.4 Feature Testing Setup . 15
1.5 Using behave . 24
1.6 Behave API Reference . 30
1.7 Fixtures . 46
1.8 Django Test Integration . 50
1.9 Flask Test Integration . 51
1.10 Practical Tips on Testing . 52
1.11 Comparison With Other Tools . 54
1.12 New and Noteworthy . 55
1.13 More Information about Behave . 73
1.14 Appendix . 75

2 Indices and tables 83

Index 85

i

ii

behave Documentation, Release 1.2.6

behave is behaviour-driven development, Python style.

Behavior-driven development (or BDD) is an agile software development technique that encourages collaboration
between developers, QA and non-technical or business participants in a software project. We have a page further
describing this philosophy.

behave uses tests written in a natural language style, backed up by Python code.

Once you’ve installed behave, we recommend reading the

• tutorial first and then

• feature test setup,

• behave API and

• related software (things that you can combine with behave)

• finally: how to use and configure the behave tool.

There is also a comparison with the other tools available.

Contents 1

https://pypi.python.org/pypi/behave
https://pypi.python.org/pypi/behave
https://pypi.python.org/pypi/behave

behave Documentation, Release 1.2.6

2 Contents

CHAPTER 1

Contents

1.1 Installation

1.1.1 Using pip (or . . .)

Category Stable version

Precondition pip (or setuptools) is installed

Execute the following command to install behave with pip:

pip install behave

To update an already installed behave version, use:

pip install -U behave

As an alternative, you can also use easy_install to install behave:

easy_install behave # CASE: New installation.
easy_install -U behave # CASE: Upgrade existing installation.

Hint: See also pip related information for installing Python packages.

1.1.2 Using a Source Distribution

After unpacking the behave source distribution, enter the newly created directory “behave-<version>” and run:

python setup.py install

1.1.3 Using the Github Repository

Category Bleading edge

Precondition pip is installed

Run the following command to install the newest version from the Github repository:

3

https://pypi.python.org/pypi/pip
https://pypi.python.org/pypi/setuptools
https://pypi.python.org/pypi/behave
https://pypi.python.org/pypi/pip
https://pypi.python.org/pypi/behave
https://pypi.python.org/pypi/setuptools
https://pypi.python.org/pypi/behave
https://pip.pypa.io/en/latest/installing/
https://pypi.python.org/pypi/behave
https://pypi.python.org/pypi/pip
https://github.com/behave/behave

behave Documentation, Release 1.2.6

pip install git+https://github.com/behave/behave

To install a tagged version from the Github repository, use:

pip install git+https://github.com/behave/behave@<tag>

where <tag> is the placeholder for an existing tag.

1.2 Tutorial

First, install behave.

Now make a directory called “features”. In that directory create a file called “tutorial.feature” containing:

Feature: showing off behave

Scenario: run a simple test
Given we have behave installed
When we implement a test
Then behave will test it for us!

Make a new directory called “features/steps”. In that directory create a file called “tutorial.py” containing:

from behave import *

@given('we have behave installed')
def step_impl(context):

pass

@when('we implement a test')
def step_impl(context):

assert True is not False

@then('behave will test it for us!')
def step_impl(context):

assert context.failed is False

Run behave:

% behave
Feature: showing off behave # features/tutorial.feature:1

Scenario: run a simple test # features/tutorial.feature:3
Given we have behave installed # features/steps/tutorial.py:3
When we implement a test # features/steps/tutorial.py:7
Then behave will test it for us! # features/steps/tutorial.py:11

1 feature passed, 0 failed, 0 skipped
1 scenario passed, 0 failed, 0 skipped
3 steps passed, 0 failed, 0 skipped, 0 undefined

Now, continue reading to learn how to make the most of behave.

1.2.1 Features

behave operates on directories containing:

1. feature files written by your Business Analyst / Sponsor / whoever with your behaviour scenarios in it, and

2. a “steps” directory with Python step implementations for the scenarios.

4 Chapter 1. Contents

https://github.com/behave/behave
https://github.com/behave/behave/tags

behave Documentation, Release 1.2.6

You may optionally include some environmental controls (code to run before and after steps, scenarios, features
or the whole shooting match).

The minimum requirement for a features directory is:

features/
features/everything.feature
features/steps/
features/steps/steps.py

A more complex directory might look like:

features/
features/signup.feature
features/login.feature
features/account_details.feature
features/environment.py
features/steps/
features/steps/website.py
features/steps/utils.py

If you’re having trouble setting things up and want to see what behave is doing in attempting to find your features
use the “-v” (verbose) command-line switch.

1.2.2 Feature Files

A feature file has a natural language format describing a feature or part of a feature with representative examples
of expected outcomes. They’re plain-text (encoded in UTF-8) and look something like:

Feature: Fight or flight
In order to increase the ninja survival rate,
As a ninja commander
I want my ninjas to decide whether to take on an
opponent based on their skill levels

Scenario: Weaker opponent
Given the ninja has a third level black-belt
When attacked by a samurai
Then the ninja should engage the opponent

Scenario: Stronger opponent
Given the ninja has a third level black-belt
When attacked by Chuck Norris
Then the ninja should run for his life

The “Given”, “When” and “Then” parts of this prose form the actual steps that will be taken by behave in testing
your system. These map to Python step implementations. As a general guide:

Given we put the system in a known state before the user (or external system) starts interacting with the system
(in the When steps). Avoid talking about user interaction in givens.

When we take key actions the user (or external system) performs. This is the interaction with your system which
should (or perhaps should not) cause some state to change.

Then we observe outcomes.

You may also include “And” or “But” as a step - these are renamed by behave to take the name of their preceding
step, so:

Scenario: Stronger opponent
Given the ninja has a third level black-belt
When attacked by Chuck Norris

(continues on next page)

1.2. Tutorial 5

behave Documentation, Release 1.2.6

(continued from previous page)

Then the ninja should run for his life
And fall off a cliff

In this case behave will look for a step definition for "Then fall off a cliff".

Scenario Outlines

Sometimes a scenario should be run with a number of variables giving a set of known states, actions to take and
expected outcomes, all using the same basic actions. You may use a Scenario Outline to achieve this:

Scenario Outline: Blenders
Given I put <thing> in a blender,
when I switch the blender on
then it should transform into <other thing>

Examples: Amphibians
| thing | other thing |
| Red Tree Frog | mush |

Examples: Consumer Electronics
thing	other thing
iPhone	toxic waste
Galaxy Nexus	toxic waste

behave will run the scenario once for each (non-heading) line appearing in the example data tables.

Step Data

Sometimes it’s useful to associate a table of data with your step.

Any text block following a step wrapped in """ lines will be associated with the step. For example:

Scenario: some scenario
Given a sample text loaded into the frobulator

"""
Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do
eiusmod tempor incididunt ut labore et dolore magna aliqua.
"""

When we activate the frobulator
Then we will find it similar to English

The text is available to the Python step code as the “.text” attribute in the Context variable passed into each step
function.

You may also associate a table of data with a step by simply entering it, indented, following the step. This can be
useful for loading specific required data into a model.

Scenario: some scenario
Given a set of specific users

name	department
Barry	Beer Cans
Pudey	Silly Walks
Two-Lumps	Silly Walks

When we count the number of people in each department
Then we will find two people in "Silly Walks"
But we will find one person in "Beer Cans"

The table is available to the Python step code as the “.table” attribute in the Context variable passed into each
step function. The table for the example above could be accessed like so:

6 Chapter 1. Contents

behave Documentation, Release 1.2.6

@given('a set of specific users')
def step_impl(context):

for row in context.table:
model.add_user(name=row['name'], department=row['department'])

There’s a variety of ways to access the table data - see the Table API documentation for the full details.

1.2.3 Python Step Implementations

Steps used in the scenarios are implemented in Python files in the “steps” directory. You can call these whatever
you like as long as they use the python *.py file extension. You don’t need to tell behave which ones to use - it’ll
use all of them.

The full detail of the Python side of behave is in the API documentation.

Steps are identified using decorators which match the predicate from the feature file: given, when, then and step
(variants with Title case are also available if that’s your preference.) The decorator accepts a string containing the
rest of the phrase used in the scenario step it belongs to.

Given a Scenario:

Scenario: Search for an account
Given I search for a valid account
Then I will see the account details

Step code implementing the two steps here might look like (using selenium webdriver and some other helpers):

@given('I search for a valid account')
def step_impl(context):

context.browser.get('http://localhost:8000/index')
form = get_element(context.browser, tag='form')
get_element(form, name="msisdn").send_keys('61415551234')
form.submit()

@then('I will see the account details')
def step_impl(context):

elements = find_elements(context.browser, id='no-account')
eq_(elements, [], 'account not found')
h = get_element(context.browser, id='account-head')
ok_(h.text.startswith("Account 61415551234"),

'Heading %r has wrong text' % h.text)

The step decorator matches the step to any step type, “given”, “when” or “then”. The “and” and “but” step
types are renamed internally to take the preceding step’s keyword (so an “and” following a “given” will become a
“given” internally and use a given decorated step).

Note: Step function names do not need to have a unique symbol name, because the text matching selects the
step function from the step registry before it is called as anonymous function. Hence, when behave prints out the
missing step implementations in a test run, it uses “step_impl” for all functions by default.

If you find you’d like your step implementation to invoke another step you may do so with the Context method
execute_steps().

This function allows you to, for example:

@when('I do the same thing as before')
def step_impl(context):

context.execute_steps('''
when I press the big red button

(continues on next page)

1.2. Tutorial 7

behave Documentation, Release 1.2.6

(continued from previous page)

and I duck
''')

This will cause the “when I do the same thing as before” step to execute the other two steps as though they had
also appeared in the scenario file.

Step Parameters

You may find that your feature steps sometimes include very common phrases with only some variation. For
example:

Scenario: look up a book
Given I search for a valid book
Then the result page will include "success"

Scenario: look up an invalid book
Given I search for a invalid book
Then the result page will include "failure"

You may define a single Python step that handles both of those Then clauses (with a Given step that puts some
text into context.response):

@then('the result page will include "{text}"')
def step_impl(context, text):

if text not in context.response:
fail('%r not in %r' % (text, context.response))

There are several parsers available in behave (by default):

parse (the default, based on: parse) Provides a simple parser that replaces regular expressions for step parame-
ters with a readable syntax like {param:Type}. The syntax is inspired by the Python builtin string.
format() function. Step parameters must use the named fields syntax of parse in step definitions. The
named fields are extracted, optionally type converted and then used as step function arguments.

Supports type conversions by using type converters (see register_type()).

cfparse (extends: parse, requires: parse_type) Provides an extended parser with “Cardinality Field” (CF) sup-
port. Automatically creates missing type converters for related cardinality as long as a type converter for
cardinality=1 is provided. Supports parse expressions like:

• {values:Type+} (cardinality=1..N, many)

• {values:Type*} (cardinality=0..N, many0)

• {value:Type?} (cardinality=0..1, optional).

Supports type conversions (as above).

re This uses full regular expressions to parse the clause text. You will need to use named groups “(?P<name>. . .)”
to define the variables pulled from the text and passed to your step() function.

Type conversion is not supported. A step function writer may implement type conversion inside the step
function (implementation).

To specify which parser to use invoke use_step_matcher() with the name of the matcher to use. You may
change matcher to suit specific step functions - the last call to use_step_matcher before a step function
declaration will be the one it uses.

Note: The function step_matcher() is becoming deprecated. Use use_step_matcher() instead.

8 Chapter 1. Contents

https://pypi.python.org/pypi/parse
https://pypi.python.org/pypi/parse
https://pypi.python.org/pypi/parse
https://pypi.python.org/pypi/parse_type

behave Documentation, Release 1.2.6

Context

You’ll have noticed the “context” variable that’s passed around. It’s a clever place where you and behave can store
information to share around. It runs at three levels, automatically managed by behave.

When behave launches into a new feature or scenario it adds a new layer to the context, allowing the new activity
level to add new values, or overwrite ones previously defined, for the duration of that activity. These can be
thought of as scopes.

You can define values in your environmental controls file which may be set at the feature level and then overridden
for some scenarios. Changes made at the scenario level won’t permanently affect the value set at the feature level.

You may also use it to share values between steps. For example, in some steps you define you might have:

@given('I request a new widget for an account via SOAP')
def step_impl(context):

client = Client("http://127.0.0.1:8000/soap/")
context.response = client.Allocate(customer_first='Firstname',

customer_last='Lastname', colour='red')

@then('I should receive an OK SOAP response')
def step_impl(context):

eq_(context.response['ok'], 1)

There’s also some values added to the context by behave itself:

table This holds any table data associated with a step.

text This holds any multi-line text associated with a step.

failed This is set at the root of the context when any step fails. It is sometimes useful to use this combined with
the --stop command-line option to prevent some mis-behaving resource from being cleaned up in an
after_feature() or similar (for example, a web browser being driven by Selenium.)

The context variable in all cases is an instance of behave.runner.Context.

1.2.4 Environmental Controls

The environment.py module may define code to run before and after certain events during your testing:

before_step(context, step), after_step(context, step) These run before and after every step.

before_scenario(context, scenario), after_scenario(context, scenario) These run before and after each sce-
nario is run.

before_feature(context, feature), after_feature(context, feature) These run before and after each feature file is
exercised.

before_tag(context, tag), after_tag(context, tag) These run before and after a section tagged with the given
name. They are invoked for each tag encountered in the order they’re found in the feature file. See control-
ling things with tags.

before_all(context), after_all(context) These run before and after the whole shooting match.

The feature, scenario and step objects represent the information parsed from the feature file. They have a number
of attributes:

keyword “Feature”, “Scenario”, “Given”, etc.

name The name of the step (the text after the keyword.)

tags A list of the tags attached to the section or step. See controlling things with tags.

filename and line The file name (or “<string>”) and line number of the statement.

A common use-case for environmental controls might be to set up a web server and browser to run all your tests
in. For example:

1.2. Tutorial 9

behave Documentation, Release 1.2.6

-- FILE: features/environment.py
from behave import fixture, use_fixture
from behave4my_project.fixtures import wsgi_server
from selenium import webdriver

@fixture
def selenium_browser_chrome(context):

-- HINT: @behave.fixture is similar to @contextlib.contextmanager
context.browser = webdriver.Chrome()
yield context.browser
-- CLEANUP-FIXTURE PART:
context.browser.quit()

def before_all(context):
use_fixture(wsgi_server, context, port=8000)
use_fixture(selenium_browser_chrome, context)
-- HINT: CLEANUP-FIXTURE is performed after after_all() hook is called.

def before_feature(context, feature):
model.init(environment='test')

-- FILE: behave4my_project/fixtures.py
ALTERNATIVE: Place fixture in "features/environment.py" (but reuse is harder)
from behave import fixture
import threading
from wsgiref import simple_server
from my_application import model
from my_application import web_app

@fixture
def wsgi_server(context, port=8000):

context.server = simple_server.WSGIServer(('', port))
context.server.set_app(web_app.main(environment='test'))
context.thread = threading.Thread(target=context.server.serve_forever)
context.thread.start()
yield context.server
-- CLEANUP-FIXTURE PART:
context.server.shutdown()
context.thread.join()

Of course, if you wish, you could have a new browser for each feature, or to retain the database state between
features or even initialise the database for each scenario.

1.2.5 Controlling Things With Tags

You may also “tag” parts of your feature file. At the simplest level this allows behave to selectively check parts of
your feature set.

Given a feature file with:

Feature: Fight or flight
In order to increase the ninja survival rate,
As a ninja commander
I want my ninjas to decide whether to take on an
opponent based on their skill levels

@slow
Scenario: Weaker opponent
Given the ninja has a third level black-belt
When attacked by a samurai

(continues on next page)

10 Chapter 1. Contents

behave Documentation, Release 1.2.6

(continued from previous page)

Then the ninja should engage the opponent

Scenario: Stronger opponent
Given the ninja has a third level black-belt
When attacked by Chuck Norris
Then the ninja should run for his life

then running behave --tags=slowwill run just the scenarios tagged @slow. If you wish to check everything
except the slow ones then you may run behave --tags=-slow.

Another common use-case is to tag a scenario you’re working on with @wip and then behave --tags=wip
to just test that one case.

Tag selection on the command-line may be combined:

• --tags=wip,slow This will select all the cases tagged either “wip” or “slow”.

• --tags=wip --tags=slow This will select all the cases tagged both “wip” and “slow”.

If a feature or scenario is tagged and then skipped because of a command-line control then the before_ and after_
environment functions will not be called for that feature or scenario. Note that behave has additional support
specifically for testing works in progress.

The tags attached to a feature and scenario are available in the environment functions via the “feature” or “sce-
nario” object passed to them. On those objects there is an attribute called “tags” which is a list of the tag names
attached, in the order they’re found in the features file.

There are also environmental controls specific to tags, so in the above example behave will attempt to invoke
an environment.py function before_tag and after_tag before and after the Scenario tagged @slow,
passing in the name “slow”. If multiple tags are present then the functions will be called multiple times with each
tag in the order they’re defined in the feature file.

Re-visiting the example from above; if only some of the features required a browser and web server then you
could tag them @browser:

-- FILE: features/environment.py
HINT: Reusing some code parts from above.
...

def before_feature(context, feature):
model.init(environment='test')
if 'browser' in feature.tags:

use_fixture(wsgi_server, context)
use_fixture(selenium_browser_chrome, context)

1.2.6 Works In Progress

behave supports the concept of a highly-unstable “work in progress” scenario that you’re actively developing.
This scenario may produce strange logging, or odd output to stdout or just plain interact in unexpected ways with
behave’s scenario runner.

To make testing such scenarios simpler we’ve implemented a “-w” command-line flag. This flag:

1. turns off stdout capture

2. turns off logging capture; you will still need to configure your own logging handlers - we recommend a
before_all() with:

if not context.config.log_capture:
logging.basicConfig(level=logging.DEBUG)

3. turns off pretty output - no ANSI escape sequences to confuse your scenario’s output

1.2. Tutorial 11

behave Documentation, Release 1.2.6

4. only runs scenarios tagged with “@wip”

5. stops at the first error

1.2.7 Fixtures

Fixtures simplify the setup/cleanup tasks that are often needed during test execution.

-- FILE: behave4my_project/fixtures.py (or in: features/environment.py)
from behave import fixture
from somewhere.browser.firefox import FirefoxBrowser

-- FIXTURE: Use generator-function
@fixture
def browser_firefox(context, timeout=30, **kwargs):

-- SETUP-FIXTURE PART:
context.browser = FirefoxBrowser(timeout, **kwargs)
yield context.browser
-- CLEANUP-FIXTURE PART:
context.browser.shutdown()

See Fixtures for more information.

1.2.8 Debug-on-Error (in Case of Step Failures)

A “debug on error/failure” functionality can easily be provided, by using the after_step() hook. The debug-
ger is started when a step fails.

It is in general a good idea to enable this functionality only when needed (in interactive mode). The functionality
is enabled (in this example) by using the user-specific configuration data. A user can:

• provide a userdata define on command-line

• store a value in the “behave.userdata” section of behave’s configuration file

-- FILE: features/environment.py
USE: behave -D BEHAVE_DEBUG_ON_ERROR (to enable debug-on-error)
USE: behave -D BEHAVE_DEBUG_ON_ERROR=yes (to enable debug-on-error)
USE: behave -D BEHAVE_DEBUG_ON_ERROR=no (to disable debug-on-error)

BEHAVE_DEBUG_ON_ERROR = False

def setup_debug_on_error(userdata):
global BEHAVE_DEBUG_ON_ERROR
BEHAVE_DEBUG_ON_ERROR = userdata.getbool("BEHAVE_DEBUG_ON_ERROR")

def before_all(context):
setup_debug_on_error(context.config.userdata)

def after_step(context, step):
if BEHAVE_DEBUG_ON_ERROR and step.status == "failed":

-- ENTER DEBUGGER: Zoom in on failure location.
NOTE: Use IPython debugger, same for pdb (basic python debugger).
import ipdb
ipdb.post_mortem(step.exc_traceback)

1.3 Behavior Driven Development

Behavior-driven development (or BDD) is an agile software development technique that encourages collaboration
between developers, QA and non-technical or business participants in a software project. It was originally named

12 Chapter 1. Contents

behave Documentation, Release 1.2.6

in 2003 by Dan North as a response to test-driven development (TDD), including acceptance test or customer test
driven development practices as found in extreme programming. It has evolved over the last few years.

On the “Agile specifications, BDD and Testing eXchange” in November 2009 in London, Dan North gave the
following definition of BDD:

BDD is a second-generation, outside–in, pull-based, multiple-stakeholder, multiple-scale, high-
automation, agile methodology. It describes a cycle of interactions with well-defined outputs, re-
sulting in the delivery of working, tested software that matters.

BDD focuses on obtaining a clear understanding of desired software behavior through discussion with stakehold-
ers. It extends TDD by writing test cases in a natural language that non-programmers can read. Behavior-driven
developers use their native language in combination with the ubiquitous language of domain-driven design to
describe the purpose and benefit of their code. This allows the developers to focus on why the code should be
created, rather than the technical details, and minimizes translation between the technical language in which the
code is written and the domain language spoken by the business, users, stakeholders, project management, etc.

1.3.1 BDD practices

The practices of BDD include:

• Establishing the goals of different stakeholders required for a vision to be implemented

• Drawing out features which will achieve those goals using feature injection

• Involving stakeholders in the implementation process through outside–in software development

• Using examples to describe the behavior of the application, or of units of code

• Automating those examples to provide quick feedback and regression testing

• Using ‘should’ when describing the behavior of software to help clarify responsibility and allow the soft-
ware’s functionality to be questioned

• Using ‘ensure’ when describing responsibilities of software to differentiate outcomes in the scope of the
code in question from side-effects of other elements of code.

• Using mocks to stand-in for collaborating modules of code which have not yet been written

1.3.2 Outside–in

BDD is driven by business value; that is, the benefit to the business which accrues once the application is in
production. The only way in which this benefit can be realized is through the user interface(s) to the application,
usually (but not always) a GUI.

In the same way, each piece of code, starting with the UI, can be considered a stakeholder of the other modules of
code which it uses. Each element of code provides some aspect of behavior which, in collaboration with the other
elements, provides the application behavior.

The first piece of production code that BDD developers implement is the UI. Developers can then benefit from
quick feedback as to whether the UI looks and behaves appropriately. Through code, and using principles of good
design and refactoring, developers discover collaborators of the UI, and of every unit of code thereafter. This helps
them adhere to the principle of YAGNI, since each piece of production code is required either by the business, or
by another piece of code already written.

1.3.3 The Gherkin language

The requirements of a retail application might be, “Refunded or exchanged items should be returned to stock.” In
BDD, a developer or QA engineer might clarify the requirements by breaking this down into specific examples.
The language of the examples below is called Gherkin and is used by behave as well as many other tools.

1.3. Behavior Driven Development 13

https://dannorth.net/introducing-bdd
https://forums.pragprog.com/forums/95/topics/3035
https://skillsmatter.com/skillscasts/923-how-to-sell-bdd-to-the-business
https://skillsmatter.com/skillscasts/923-how-to-sell-bdd-to-the-business
https://lizkeogh.com/2007/06/13/bdd-tdd-done-well/

behave Documentation, Release 1.2.6

Scenario: Refunded items should be returned to stock
Given a customer previously bought a black sweater from me
and I currently have three black sweaters left in stock.

When he returns the sweater for a refund
then I should have four black sweaters in stock.,

Scenario: Replaced items should be returned to stock
Given that a customer buys a blue garment
and I have two blue garments in stock
and three black garments in stock.

When he returns the garment for a replacement in black,
then I should have three blue garments in stock
and two black garments in stock.

Each scenario is an exemplar, designed to illustrate a specific aspect of behavior of the application.

When discussing the scenarios, participants question whether the outcomes described always result from those
events occurring in the given context. This can help to uncover further scenarios which clarify the requirements.
For instance, a domain expert noticing that refunded items are not always returned to stock might reword the
requirements as “Refunded or replaced items should be returned to stock, unless faulty.”.

This in turn helps participants to pin down the scope of requirements, which leads to better estimates of how long
those requirements will take to implement.

The words Given, When and Then are often used to help drive out the scenarios, but are not mandated.

These scenarios can also be automated, if an appropriate tool exists to allow automation at the UI level. If no such
tool exists then it may be possible to automate at the next level in, i.e.: if an MVC design pattern has been used,
the level of the Controller.

1.3.4 Programmer-domain examples and behavior

The same principles of examples, using contexts, events and outcomes are used to drive development at the level
of abstraction of the programmer, as opposed to the business level. For instance, the following examples describe
an aspect of behavior of a list:

Scenario: New lists are empty
Given a new list
then the list should be empty.

Scenario: Lists with things in them are not empty.
Given a new list
when we add an object
then the list should not be empty.

Both these examples are required to describe the boolean nature of a list in Python and to derive the benefit of
the nature. These examples are usually automated using TDD frameworks. In BDD these examples are often
encapsulated in a single method, with the name of the method being a complete description of the behavior. Both
examples are required for the code to be valuable, and encapsulating them in this way makes it easy to question,
remove or change the behavior.

For instance as unit tests, the above examples might become:

class TestList(object):
def test_empty_list_is_false(self):

list = []
assertEqual(bool(list), False)

def test_populated_list_is_true(self):
list = []
list.append('item')
assertEqual(bool(list), True)

14 Chapter 1. Contents

https://dannorth.net/whats-in-a-story

behave Documentation, Release 1.2.6

Sometimes the difference between the context, events and outcomes is made more explicit. For instance:

class TestWindow(object):
def test_window_close(self):

Given
window = gui.Window("My Window")
frame = gui.Frame(window)

When
window.close()

Then
assert_(not frame.isVisible())

However the example is phrased, the effect describes the behavior of the code in question. For instance, from the
examples above one can derive:

• lists should know when they are empty

• window.close() should cause contents to stop being visible

The description is intended to be useful if the test fails, and to provide documentation of the code’s behavior. Once
the examples have been written they are then run and the code implemented to make them work in the same way
as TDD. The examples then become part of the suite of regression tests.

1.3.5 Using mocks

BDD proponents claim that the use of “should” and “ensureThat” in BDD examples encourages developers to
question whether the responsibilities they’re assigning to their classes are appropriate, or whether they can be
delegated or moved to another class entirely. Practitioners use an object which is simpler than the collaborating
code, and provides the same interface but more predictable behavior. This is injected into the code which needs it,
and examples of that code’s behavior are written using this object instead of the production version.

These objects can either be created by hand, or created using a mocking framework such as mock.

Questioning responsibilities in this way, and using mocks to fulfill the required roles of collaborating classes,
encourages the use of Role-based Interfaces. It also helps to keep the classes small and loosely coupled.

1.3.6 Acknowledgement

This text is partially taken from the wikipedia text on Behavior Driven Development with modifications where
appropriate to be more specific to behave and Python.

1.4 Feature Testing Setup

1.4.1 Feature Testing Layout

behave works with three types of files:

1. feature files written by your Business Analyst / Sponsor / whoever with your behaviour scenarios in it, and

2. a “steps” directory with Python step implementations for the scenarios.

3. optionally some environmental controls (code to run before and after steps, scenarios, features or the whole
shooting match).

These files are typically stored in a directory called “features”. The minimum requirement for a features directory
is:

1.4. Feature Testing Setup 15

https://pypi.python.org/pypi/mock
https://en.wikipedia.org/wiki/Behavior_Driven_Development
tutorial.html#python-step-implementations
tutorial.html#environmental-controls

behave Documentation, Release 1.2.6

features/
features/everything.feature
features/steps/
features/steps/steps.py

A more complex directory might look like:

features/
features/signup.feature
features/login.feature
features/account_details.feature
features/environment.py
features/steps/
features/steps/website.py
features/steps/utils.py

Layout Variations

behave has some flexibility built in. It will actually try quite hard to find feature specifications. When launched
you may pass on the command line:

nothing In the absence of any information behave will attempt to load your features from a subdirectory called
“features” in the directory you launched behave.

a features directory path This is the path to a features directory laid out as described above. It may be called
anything by must contain at least one “name.feature” file and a directory called “steps”. The “environ-
ment.py” file, if present, must be in the same directory that contains the “steps” directory (not in the “steps”
directory).

the path to a “*name*.feature” file This tells behave where to find the feature file. To find the steps directory
behave will look in the directory containing the feature file. If it is not present, behave will look in the parent
directory, and then its parent, and so on until it hits the root of the filesystem. The “environment.py” file, if
present, must be in the same directory that contains the “steps” directory (not in the “steps” directory).

a directory containing your feature files Similar to the approach above, you’re identifying the directory where
your “name.feature” files are, and if the “steps” directory is not in the same place then behave will search
for it just like above. This allows you to have a layout like:

tests/
tests/environment.py
tests/features/signup.feature
tests/features/login.feature
tests/features/account_details.feature
tests/steps/
tests/steps/website.py
tests/steps/utils.py

Note that with this approach, if you want to execute behave without having to explicitly specify the directory
(first option) you can set the paths setting in your configuration file (e.g. paths=tests).

If you’re having trouble setting things up and want to see what behave is doing in attempting to find your features
use the “-v” (verbose) command-line switch.

1.4.2 Gherkin: Feature Testing Language

behave features are written using a language called Gherkin (with some modifications) and are named
“name.feature”.

These files should be written using natural language - ideally by the non-technical business participants in the
software project. Feature files serve two purposes – documentation and automated tests.

16 Chapter 1. Contents

behave.html#configuration-files
https://github.com/cucumber/cucumber/wiki/Gherkin

behave Documentation, Release 1.2.6

It is very flexible but has a few simple rules that writers need to adhere to.

Line endings terminate statements (eg, steps). Either spaces or tabs may be used for indentation (but spaces are
more portable). Indentation is almost always ignored - it’s a tool for the feature writer to express some structure
in the text. Most lines start with a keyword (“Feature”, “Scenario”, “Given”, . . .)

Comment lines are allowed anywhere in the file. They begin with zero or more spaces, followed by a sharp sign
(#) and some amount of text.

Features

Features are composed of scenarios. They may optionally have a description, a background and a set of tags. In
its simplest form a feature looks like:

Feature: feature name

Scenario: some scenario
Given some condition
Then some result is expected.

In all its glory it could look like:

@tags @tag
Feature: feature name
description
further description

Background: some requirement of this test
Given some setup condition

And some other setup action

Scenario: some scenario
Given some condition
When some action is taken
Then some result is expected.

Scenario: some other scenario
Given some other condition
When some action is taken
Then some other result is expected.

Scenario: ...

The feature name should just be some reasonably descriptive title for the feature being tested, like “the message
posting interface”. The following description is optional and serves to clarify any potential confusion or scope
issue in the feature name. The description is for the benefit of humans reading the feature text.

The Background part and the Scenarios will be discussed in the following sections.

Background

A background consists of a series of steps similar to scenarios. It allows you to add some context to the scenarios
of a feature. A background is executed before each scenario of this feature but after any of the before hooks. It is
useful for performing setup operations like:

• logging into a web browser or

• setting up a database with test data used by the scenarios.

The background description is for the benefit of humans reading the feature text. Again the background name
should just be a reasonably descriptive title for the background operation being performed or requirement being
met.

1.4. Feature Testing Setup 17

behave Documentation, Release 1.2.6

A background section may exist only once within a feature file. In addition, a background must be defined before
any scenario or scenario outline.

It contains steps as described below.

Good practices for using Background

Don’t use “Background” to set up complicated state unless that state is actually something the client needs to know.
For example, if the user and site names don’t matter to the client, you should use a high-level step such as
“Given that I am logged in as a site owner”.

Keep your “Background” section short. You’re expecting the user to actually remember this stuff when reading
your scenarios. If the background is more than 4 lines long, can you move some of the irrelevant details
into high-level steps? See calling steps from other steps.

Make your “Background” section vivid. You should use colorful names and try to tell a story, because the hu-
man brain can keep track of stories much better than it can keep track of names like “User A”, “User B”,
“Site 1”, and so on.

Keep your scenarios short, and don’t have too many. If the background section has scrolled off the screen, you
should think about using higher-level steps, or splitting the features file in two.

Scenarios

Scenarios describe the discrete behaviours being tested. They are given a title which should be a reasonably
descriptive title for the scenario being tested. The scenario description is for the benefit of humans reading the
feature text.

Scenarios are composed of a series of steps as described below. The steps typically take the form of “given some
condition” “then we expect some test will pass.” In this simplest form, a scenario might be:

Scenario: we have some stock when we open the store
Given that the store has just opened
then we should have items for sale.

There may be additional conditions imposed on the scenario, and these would take the form of “when” steps
following the initial “given” condition. If necessary, additional “and” or “but” steps may also follow the “given”,
“when” and “then” steps if more needs to be tested. A more complex example of a scenario might be:

Scenario: Replaced items should be returned to stock
Given that a customer buys a blue garment
and I have two blue garments in stock
but I have no red garments in stock
and three black garments in stock.

When he returns the garment for a replacement in black,
then I should have three blue garments in stock
and no red garments in stock,
and two black garments in stock.

It is good practise to have a scenario test only one behaviour or desired outcome.

Scenarios contain steps as described below.

Scenario Outlines

These may be used when you have a set of expected conditions and outcomes to go along with your scenario steps.

An outline includes keywords in the step definitions which are filled in using values from example tables. You
may have a number of example tables in each scenario outline.

18 Chapter 1. Contents

api.html#calling-steps-from-other-steps

behave Documentation, Release 1.2.6

Scenario Outline: Blenders
Given I put <thing> in a blender,
when I switch the blender on
then it should transform into <other thing>

Examples: Amphibians
| thing | other thing |
| Red Tree Frog | mush |

Examples: Consumer Electronics
thing	other thing
iPhone	toxic waste
Galaxy Nexus	toxic waste

behave will run the scenario once for each (non-heading) line appearing in the example data tables.

The values to replace are determined using the name appearing in the angle brackets “<name>” which must match
a headings of the example tables. The name may include almost any character, though not the close angle bracket
“>”.

Substitution may also occur in step data if the “<name>” texts appear within the step data text or table cells.

Steps

Steps take a line each and begin with a keyword - one of “given”, “when”, “then”, “and” or “but”.

In a formal sense the keywords are all Title Case, though some languages allow all-lowercase keywords where
that makes sense.

Steps should not need to contain significant degree of detail about the mechanics of testing; that is, instead of:

Given a browser client is used to load the URL "http://website.example/website/
→˓home.html"

the step could instead simply say:

Given we are looking at the home page

Steps are implemented using Python code which is implemented in the “steps” directory in Python modules (files
with Python code which are named “name.py”.) The naming of the Python modules does not matter. All modules
in the “steps” directory will be imported by behave at startup to discover the step implementations.

Given, When, Then (And, But)

behave doesn’t technically distinguish between the various kinds of steps. However, we strongly recommend that
you do! These words have been carefully selected for their purpose, and you should know what the purpose is to
get into the BDD mindset.

Given

The purpose of givens is to put the system in a known state before the user (or external system) starts interacting
with the system (in the When steps). Avoid talking about user interaction in givens. If you had worked with
usecases, you would call this preconditions.

Examples:

• Create records (model instances) / set up the database state.

• It’s ok to call directly into your application model here.

• Log in a user (An exception to the no-interaction recommendation. Things that “happened earlier” are ok).

1.4. Feature Testing Setup 19

behave Documentation, Release 1.2.6

You might also use Given with a multiline table argument to set up database records instead of fixtures hard-coded
in steps. This way you can read the scenario and make sense out of it without having to look elsewhere (at the
fixtures).

When

Each of these steps should describe the key action the user (or external system) performs. This is the interaction
with your system which should (or perhaps should not) cause some state to change.

Examples:

• Interact with a web page (Requests/Twill/Selenium interaction etc should mostly go into When steps).

• Interact with some other user interface element.

• Developing a library? Kicking off some kind of action that has an observable effect somewhere else.

Then

Here we observe outcomes. The observations should be related to the business value/benefit in your feature
description. The observations should also be on some kind of output - that is something that comes out of the
system (report, user interface, message) and not something that is deeply buried inside it (that has no business
value).

Examples:

• Verify that something related to the Given+When is (or is not) in the output

• Check that some external system has received the expected message (was an email with specific content
sent?)

While it might be tempting to implement Then steps to just look in the database - resist the temptation. You should
only verify outcome that is observable for the user (or external system) and databases usually are not.

And, But

If you have several givens, whens or thens you could write:

Scenario: Multiple Givens
Given one thing
Given an other thing
Given yet an other thing
When I open my eyes
Then I see something
Then I don't see something else

Or you can make it read more fluently by writing:

Scenario: Multiple Givens
Given one thing
And an other thing
And yet an other thing

When I open my eyes
Then I see something
But I don't see something else

The two scenarios are identical to behave - steps beginning with “and” or “but” are exactly the same kind of steps
as all the others. They simply mimic the step that preceeds them.

20 Chapter 1. Contents

http://docs.python-requests.org/en/latest/
http://twill.idyll.org/
http://docs.seleniumhq.org/projects/webdriver/

behave Documentation, Release 1.2.6

Step Data

Steps may have some text or a table of data attached to them.

Substitution of scenario outline values will be done in step data text or table data if the “<name>” texts appear
within the step data text or table cells.

Text

Any text block following a step wrapped in """ lines will be associated with the step. This is the one case where
indentation is actually parsed: the leading whitespace is stripped from the text, and successive lines of the text
should have at least the same amount of whitespace as the first line.

So for this rather contrived example:

Scenario: some scenario
Given a sample text loaded into the frobulator

"""
Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do
eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut
enim ad minim veniam, quis nostrud exercitation ullamco laboris
nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in
reprehenderit in voluptate velit esse cillum dolore eu fugiat
nulla pariatur. Excepteur sint occaecat cupidatat non proident,
sunt in culpa qui officia deserunt mollit anim id est laborum.
"""

When we activate the frobulator
Then we will find it similar to English

The text is available to the Python step code as the “.text” attribute in the Context variable passed into each step
function. The text supplied on the first step in a scenario will be available on the context variable for the duration
of that scenario. Any further text present on a subsequent step will overwrite previously-set text.

Table

You may associate a table of data with a step by simply entering it, indented, following the step. This can be useful
for loading specific required data into a model.

The table formatting doesn’t have to be strictly lined up but it does need to have the same number of columns on
each line. A column is anything appearing between two vertical bars “|”. Any whitespace between the column
content and the vertical bar is removed.

Scenario: some scenario
Given a set of specific users

name	department
Barry	Beer Cans
Pudey	Silly Walks
Two-Lumps	Silly Walks

When we count the number of people in each department
Then we will find two people in "Silly Walks"
But we will find one person in "Beer Cans"

The table is available to the Python step code as the “.table” attribute in the Context variable passed into each
step function. The table is an instance of Table and for the example above could be accessed like so:

@given('a set of specific users')
def step_impl(context):

for row in context.table:
model.add_user(name=row['name'], department=row['department'])

1.4. Feature Testing Setup 21

behave Documentation, Release 1.2.6

There’s a variety of ways to access the table data - see the Table API documentation for the full details.

Tags

You may also “tag” parts of your feature file. At the simplest level this allows behave to selectively check parts of
your feature set.

You may tag features, scenarios or scenario outlines but nothing else. Any tag that exists in a feature will be
inherited by its scenarios and scenario outlines.

Tags appear on the line preceding the feature or scenario you wish to tag. You may have many space-separated
tags on a single line.

A tag takes the form of the at symbol “@” followed by a word (which may include underscores “_”). Valid tag
lines include:

@slow
@wip
@needs_database @slow

For example:

@wip @slow
Feature: annual reporting
Some description of a slow reporting system.

or:

@wip
@slow
Feature: annual reporting
Some description of a slow reporting system.

Tags may be used to control your test run by only including certain features or scenarios based on tag selection.
The tag information may also be accessed from the Python code backing up the tests.

Controlling Your Test Run With Tags

Given a feature file with:

Feature: Fight or flight
In order to increase the ninja survival rate,
As a ninja commander
I want my ninjas to decide whether to take on an
opponent based on their skill levels

@slow
Scenario: Weaker opponent
Given the ninja has a third level black-belt
When attacked by a samurai
Then the ninja should engage the opponent

Scenario: Stronger opponent
Given the ninja has a third level black-belt
When attacked by Chuck Norris
Then the ninja should run for his life

then running behave --tags=slowwill run just the scenarios tagged @slow. If you wish to check everything
except the slow ones then you may run behave --tags=-slow.

Another common use-case is to tag a scenario you’re working on with @wip and then behave --tags=wip
to just test that one case.

22 Chapter 1. Contents

behave Documentation, Release 1.2.6

Tag selection on the command-line may be combined:

–tags=wip,slow This will select all the cases tagged either “wip” or “slow”.

–tags=wip –tags=slow This will select all the cases tagged both “wip” and “slow”.

If a feature or scenario is tagged and then skipped because of a command-line control then the before_ and after_
environment functions will not be called for that feature or scenario.

Accessing Tag Information In Python

The tags attached to a feature and scenario are available in the environment functions via the “feature” or “sce-
nario” object passed to them. On those objects there is an attribute called “tags” which is a list of the tag names
attached, in the order they’re found in the features file.

There are also environmental controls specific to tags, so in the above example behave will attempt to invoke
an environment.py function before_tag and after_tag before and after the Scenario tagged @slow,
passing in the name “slow”. If multiple tags are present then the functions will be called multiple times with each
tag in the order they’re defined in the feature file.

Re-visiting the example from above; if only some of the features required a browser and web server then you
could tag them @browser:

def before_feature(context, feature):
model.init(environment='test')
if 'browser' in feature.tags:

context.server = simple_server.WSGIServer(('', 8000))
context.server.set_app(web_app.main(environment='test'))
context.thread = threading.Thread(target=context.server.serve_forever)
context.thread.start()
context.browser = webdriver.Chrome()

def after_feature(context, feature):
if 'browser' in feature.tags:

context.server.shutdown()
context.thread.join()
context.browser.quit()

Languages Other Than English

English is the default language used in parsing feature files. If you wish to use a different language you should
check to see whether it is available:

behave --lang-list

This command lists all the supported languages. If yours is present then you have two options:

1. add a line to the top of the feature files like (for French):

language: fr

2. use the command-line switch --lang:

behave --lang=fr

The feature file keywords will now use the French translations. To see what the language equivalents recognised
by behave are, use:

behave --lang-help fr

1.4. Feature Testing Setup 23

tutorial.html#environmental-controls

behave Documentation, Release 1.2.6

Modifications to the Gherkin Standard

behave can parse standard Gherkin files and extends Gherkin to allow lowercase step keywords because these can
sometimes allow more readable feature specifications.

1.5 Using behave

The command-line tool behave has a bunch of command-line arguments and is also configurable using configura-
tion files.

Values defined in the configuration files are used as defaults which the command-line arguments may override.

1.5.1 Command-Line Arguments

You may see the same information presented below at any time using behave -h.

-c, --no-color
Disable the use of ANSI color escapes.

--color
Use ANSI color escapes. This is the default behaviour. This switch is used to override a configuration file
setting.

-d, --dry-run
Invokes formatters without executing the steps.

-D, --define
Define user-specific data for the config.userdata dictionary. Example: -D foo=bar to store it in con-
fig.userdata[“foo”].

-e, --exclude
Don’t run feature files matching regular expression PATTERN.

-i, --include
Only run feature files matching regular expression PATTERN.

--no-junit
Don’t output JUnit-compatible reports.

--junit
Output JUnit-compatible reports. When junit is enabled, all stdout and stderr will be redirected and dumped
to the junit report, regardless of the “–capture” and “–no-capture” options.

--junit-directory
Directory in which to store JUnit reports.

-f, --format
Specify a formatter. If none is specified the default formatter is used. Pass “–format help” to get a list of
available formatters.

--steps-catalog
Show a catalog of all available step definitions. SAME AS: –format=steps.catalog –dry-run –no-summary
-q

-k, --no-skipped
Don’t print skipped steps (due to tags).

--show-skipped
Print skipped steps. This is the default behaviour. This switch is used to override a configuration file setting.

--no-snippets
Don’t print snippets for unimplemented steps.

24 Chapter 1. Contents

behave Documentation, Release 1.2.6

--snippets
Print snippets for unimplemented steps. This is the default behaviour. This switch is used to override a
configuration file setting.

-m, --no-multiline
Don’t print multiline strings and tables under steps.

--multiline
Print multiline strings and tables under steps. This is the default behaviour. This switch is used to override
a configuration file setting.

-n, --name
Only execute the feature elements which match part of the given name. If this option is given more than
once, it will match against all the given names.

--no-capture
Don’t capture stdout (any stdout output will be printed immediately.)

--capture
Capture stdout (any stdout output will be printed if there is a failure.) This is the default behaviour. This
switch is used to override a configuration file setting.

--no-capture-stderr
Don’t capture stderr (any stderr output will be printed immediately.)

--capture-stderr
Capture stderr (any stderr output will be printed if there is a failure.) This is the default behaviour. This
switch is used to override a configuration file setting.

--no-logcapture
Don’t capture logging. Logging configuration will be left intact.

--logcapture
Capture logging. All logging during a step will be captured and displayed in the event of a failure. This is
the default behaviour. This switch is used to override a configuration file setting.

--logging-level
Specify a level to capture logging at. The default is INFO - capturing everything.

--logging-format
Specify custom format to print statements. Uses the same format as used by standard logging handlers. The
default is “%(levelname)s:%(name)s:%(message)s”.

--logging-datefmt
Specify custom date/time format to print statements. Uses the same format as used by standard logging
handlers.

--logging-filter
Specify which statements to filter in/out. By default, everything is captured. If the output is too verbose,
use this option to filter out needless output. Example: –logging-filter=foo will capture statements issued
ONLY to foo or foo.what.ever.sub but not foobar or other logger. Specify multiple loggers with comma:
filter=foo,bar,baz. If any logger name is prefixed with a minus, eg filter=-foo, it will be excluded rather than
included.

--logging-clear-handlers
Clear all other logging handlers.

--no-summary
Don’t display the summary at the end of the run.

--summary
Display the summary at the end of the run.

-o, --outfile
Write to specified file instead of stdout.

1.5. Using behave 25

behave Documentation, Release 1.2.6

-q, --quiet
Alias for –no-snippets –no-source.

-s, --no-source
Don’t print the file and line of the step definition with the steps.

--show-source
Print the file and line of the step definition with the steps. This is the default behaviour. This switch is used
to override a configuration file setting.

--stage
Defines the current test stage. The test stage name is used as name prefix for the environment file and the
steps directory (instead of default path names).

--stop
Stop running tests at the first failure.

-t, --tags
Only execute features or scenarios with tags matching TAG_EXPRESSION. Pass “–tags-help” for more
information.

-T, --no-timings
Don’t print the time taken for each step.

--show-timings
Print the time taken, in seconds, of each step after the step has completed. This is the default behaviour.
This switch is used to override a configuration file setting.

-v, --verbose
Show the files and features loaded.

-w, --wip
Only run scenarios tagged with “wip”. Additionally: use the “plain” formatter, do not capture stdout or
logging output and stop at the first failure.

-x, --expand
Expand scenario outline tables in output.

--lang
Use keywords for a language other than English.

--lang-list
List the languages available for –lang.

--lang-help
List the translations accepted for one language.

--tags-help
Show help for tag expressions.

--version
Show version.

Tag Expression

Scenarios inherit tags declared on the Feature level. The simplest TAG_EXPRESSION is simply a tag:

--tags @dev

You may even leave off the “@” - behave doesn’t mind.

When a tag in a tag expression starts with a ~, this represents boolean NOT:

--tags ~@dev

A tag expression can have several tags separated by a comma, which represents logical OR:

26 Chapter 1. Contents

behave Documentation, Release 1.2.6

--tags @dev,@wip

The –tags option can be specified several times, and this represents logical AND, for instance this represents the
boolean expression “(@foo or not @bar) and @zap”:

--tags @foo,~@bar --tags @zap.

Beware that if you want to use several negative tags to exclude several tags you have to use logical AND:

--tags ~@fixme --tags ~@buggy.

1.5.2 Configuration Files

Configuration files for behave are called either “.behaverc”, “behave.ini”, “setup.cfg” or “tox.ini” (your prefer-
ence) and are located in one of three places:

1. the current working directory (good for per-project settings),

2. your home directory ($HOME), or

3. on Windows, in the %APPDATA% directory.

If you are wondering where behave is getting its configuration defaults from you can use the “-v” command-line
argument and it’ll tell you.

Configuration files must start with the label “[behave]” and are formatted in the Windows INI style, for example:

[behave]
format=plain
logging_clear_handlers=yes
logging_filter=-suds

Configuration Parameter Types

The following types are supported (and used):

text This just assigns whatever text you supply to the configuration setting.

bool This assigns a boolean value to the configuration setting. The text describes the functionality when the value
is true. True values are “1”, “yes”, “true”, and “on”. False values are “0”, “no”, “false”, and “off”.

sequence<text> These fields accept one or more values on new lines, for example a tag expression might look
like:

tags=@foo,~@bar
@zap

which is the equivalent of the command-line usage:

--tags @foo,~@bar --tags @zap

Configuration Parameters

color : bool
Use ANSI color escapes. This is the default behaviour. This switch is used to override a configuration file
setting.

dry_run : bool
Invokes formatters without executing the steps.

1.5. Using behave 27

behave Documentation, Release 1.2.6

userdata_defines : sequence<text>
Define user-specific data for the config.userdata dictionary. Example: -D foo=bar to store it in con-
fig.userdata[“foo”].

exclude_re : text
Don’t run feature files matching regular expression PATTERN.

include_re : text
Only run feature files matching regular expression PATTERN.

junit : bool
Output JUnit-compatible reports. When junit is enabled, all stdout and stderr will be redirected and dumped
to the junit report, regardless of the “–capture” and “–no-capture” options.

junit_directory : text
Directory in which to store JUnit reports.

default_format : text
Specify default formatter (default: pretty).

format : sequence<text>
Specify a formatter. If none is specified the default formatter is used. Pass “–format help” to get a list of
available formatters.

steps_catalog : bool
Show a catalog of all available step definitions. SAME AS: –format=steps.catalog –dry-run –no-summary
-q

scenario_outline_annotation_schema : text
Specify name annotation schema for scenario outline (default=”{name} – @{row.id} {examples.name}”).

show_skipped : bool
Print skipped steps. This is the default behaviour. This switch is used to override a configuration file setting.

show_snippets : bool
Print snippets for unimplemented steps. This is the default behaviour. This switch is used to override a
configuration file setting.

show_multiline : bool
Print multiline strings and tables under steps. This is the default behaviour. This switch is used to override
a configuration file setting.

name : sequence<text>
Only execute the feature elements which match part of the given name. If this option is given more than
once, it will match against all the given names.

stdout_capture : bool
Capture stdout (any stdout output will be printed if there is a failure.) This is the default behaviour. This
switch is used to override a configuration file setting.

stderr_capture : bool
Capture stderr (any stderr output will be printed if there is a failure.) This is the default behaviour. This
switch is used to override a configuration file setting.

log_capture : bool
Capture logging. All logging during a step will be captured and displayed in the event of a failure. This is
the default behaviour. This switch is used to override a configuration file setting.

logging_level : text
Specify a level to capture logging at. The default is INFO - capturing everything.

logging_format : text
Specify custom format to print statements. Uses the same format as used by standard logging handlers. The
default is “%(levelname)s:%(name)s:%(message)s”.

28 Chapter 1. Contents

behave Documentation, Release 1.2.6

logging_datefmt : text
Specify custom date/time format to print statements. Uses the same format as used by standard logging
handlers.

logging_filter : text
Specify which statements to filter in/out. By default, everything is captured. If the output is too verbose, use
this option to filter out needless output. Example: logging_filter = foo will capture statements
issued ONLY to “foo” or “foo.what.ever.sub” but not “foobar” or other logger. Specify multiple loggers
with comma: logging_filter = foo,bar,baz. If any logger name is prefixed with a minus, eg
logging_filter = -foo, it will be excluded rather than included.

logging_clear_handlers : bool
Clear all other logging handlers.

summary : bool
Display the summary at the end of the run.

outfiles : sequence<text>
Write to specified file instead of stdout.

paths : sequence<text>
Specify default feature paths, used when none are provided.

quiet : bool
Alias for –no-snippets –no-source.

show_source : bool
Print the file and line of the step definition with the steps. This is the default behaviour. This switch is used
to override a configuration file setting.

stage : text
Defines the current test stage. The test stage name is used as name prefix for the environment file and the
steps directory (instead of default path names).

stop : bool
Stop running tests at the first failure.

default_tags : text
Define default tags when non are provided. See –tags for more information.

tags : sequence<text>
Only execute certain features or scenarios based on the tag expression given. See below for how to code tag
expressions in configuration files.

show_timings : bool
Print the time taken, in seconds, of each step after the step has completed. This is the default behaviour.
This switch is used to override a configuration file setting.

verbose : bool
Show the files and features loaded.

wip : bool
Only run scenarios tagged with “wip”. Additionally: use the “plain” formatter, do not capture stdout or
logging output and stop at the first failure.

expand : bool
Expand scenario outline tables in output.

lang : text
Use keywords for a language other than English.

1.5. Using behave 29

behave Documentation, Release 1.2.6

1.6 Behave API Reference

This reference is meant for people actually writing step implementations for feature tests. It contains way more
information than a typical step implementation will need: most implementations will only need to look at the basic
implementation of step functions and maybe environment file functions.

The model stuff is for people getting really serious about their step implementations.

Note: Anywhere this document says “string” it means “unicode string” in Python 2.x

behave works exclusively with unicode strings internally.

1.6.1 Step Functions

Step functions are implemented in the Python modules present in your “steps” directory. All Python files (files
ending in “.py”) in that directory will be imported to find step implementations. They are all loaded before behave
starts executing your feature tests.

Step functions are identified using step decorators. All step implementations should normally start with the
import line:

from behave import *

This line imports several decorators defined by behave to allow you to identify your step functions. These are
available in both PEP-8 (all lowercase) and traditional (title case) versions: “given”, “when”, “then” and the
generic “step”. See the full list of variables imported in the above statement.

The decorators all take a single string argument: the string to match against the feature file step text exactly. So
the following step implementation code:

@given('some known state')
def step_impl(context):

set_up(some, state)

will match the “Given” step from the following feature:

Scenario: test something
Given some known state
then some observed outcome.

You don’t need to import the decorators: they’re automatically available to your step implementation modules as
global variables.

Steps beginning with “and” or “but” in the feature file are renamed to take the name of their preceding keyword,
so given the following feature file:

Given some known state
and some other known state

when some action is taken
then some outcome is observed
but some other outcome is not observed.

the first “and” step will be renamed internally to “given” and behave will look for a step implementation decorated
with either “given” or “step”:

@given('some other known state')
def step_impl(context):

set_up(some, other, state)

30 Chapter 1. Contents

behave Documentation, Release 1.2.6

and similarly the “but” would be renamed internally to “then”. Multiple “and” or “but” steps in a row would
inherit the non-“and” or “but” keyword.

The function decorated by the step decorator will be passed at least one argument. The first argument is always
the Context variable. Additional arguments come from step parameters, if any.

Step Parameters

You may additionally use parameters in your step names. These will be handled by either the default simple parser
(parse), its extension “cfparse” or by regular expressions if you invoke use_step_matcher().

behave.use_step_matcher(name)
Change the parameter matcher used in parsing step text.

The change is immediate and may be performed between step definitions in your step implementation
modules - allowing adjacent steps to use different matchers if necessary.

There are several parsers available in behave (by default):

parse (the default, based on: parse) Provides a simple parser that replaces regular expressions for step
parameters with a readable syntax like {param:Type}. The syntax is inspired by the Python builtin
string.format() function. Step parameters must use the named fields syntax of parse in step
definitions. The named fields are extracted, optionally type converted and then used as step function
arguments.

Supports type conversions by using type converters (see register_type()).

cfparse (extends: parse, requires: parse_type) Provides an extended parser with “Cardinality Field”
(CF) support. Automatically creates missing type converters for related cardinality as long as a type
converter for cardinality=1 is provided. Supports parse expressions like:

• {values:Type+} (cardinality=1..N, many)

• {values:Type*} (cardinality=0..N, many0)

• {value:Type?} (cardinality=0..1, optional)

Supports type conversions (as above).

re This uses full regular expressions to parse the clause text. You will need to use named groups
“(?P<name>. . .)” to define the variables pulled from the text and passed to your step() function.

Type conversion is not supported. A step function writer may implement type conversion inside the
step function (implementation).

You may define your own matcher.

You may add new types to the default parser by invoking register_type().

behave.register_type(**kw)
Registers a custom type that will be available to “parse” for type conversion during step matching.

Converters should be supplied as name=callable arguments (or as dict).

A type converter should follow parse module rules. In general, a type converter is a function that converts
text (as string) into a value-type (type converted value).

EXAMPLE:

from behave import register_type, given
import parse

-- TYPE CONVERTER: For a simple, positive integer number.
@parse.with_pattern(r"\d+")
def parse_number(text):

return int(text)

(continues on next page)

1.6. Behave API Reference 31

tutorial.html#step-parameters
https://pypi.python.org/pypi/parse
https://pypi.python.org/pypi/parse
https://pypi.python.org/pypi/parse
https://pypi.python.org/pypi/parse
https://pypi.python.org/pypi/parse_type
api.html#step-parameters
https://pypi.python.org/pypi/parse

behave Documentation, Release 1.2.6

(continued from previous page)

-- REGISTER TYPE-CONVERTER: With behave
register_type(Number=parse_number)

-- STEP DEFINITIONS: Use type converter.
@given('{amount:Number} vehicles')
def step_impl(context, amount):

assert isinstance(amount, int)

You may define a new parameter matcher by subclassing behave.matchers.Matcher and registering it with
behave.matchers.matcher_mapping which is a dictionary of “matcher name” to Matcher class.

class behave.matchers.Matcher(func, pattern, step_type=None)
Pull parameters out of step names.

pattern
The match pattern attached to the step function.

func
The step function the pattern is being attached to.

check_match(step)
Match me against the “step” name supplied.

Return None, if I don’t match otherwise return a list of matches as Argument instances.

The return value from this function will be converted into a Match instance by behave.

describe(schema=None)
Provide a textual description of the step function/matcher object.

Parameters schema – Text schema to use.

Returns Textual description of this step definition (matcher).

regex_pattern
Return the used textual regex pattern.

class behave.model_core.Argument(start, end, original, value, name=None)
An argument found in a feature file step name and extracted using step decorator parameters.

The attributes are:

original
The actual text matched in the step name.

value
The potentially type-converted value of the argument.

name
The name of the argument. This will be None if the parameter is anonymous.

start
The start index in the step name of the argument. Used for display.

end
The end index in the step name of the argument. Used for display.

class behave.matchers.Match(func, arguments=None)
An parameter-matched feature file step name extracted using step decorator parameters.

func
The step function that this match will be applied to.

arguments
A list of Argument instances containing the matched parameters from the step name.

32 Chapter 1. Contents

tutorial.html#step-parameters
tutorial.html#step-parameters

behave Documentation, Release 1.2.6

Calling Steps From Other Steps

If you find you’d like your step implementation to invoke another step you may do so with the Context method
execute_steps().

This function allows you to, for example:

@when('I do the same thing as before')
def step_impl(context):

context.execute_steps(u'''
when I press the big red button
and I duck

''')

This will cause the “when I do the same thing as before” step to execute the other two steps as though they had
also appeared in the scenario file.

from behave import *

The import statement:

from behave import *

is written to introduce a restricted set of variables into your code:

Name Kind Description
given, when, then, step Decorator Decorators for step implementations.
use_step_matcher(name) Function Selects current step matcher (parser).
register_type(Type=func) Function Registers a type converter.

See also the description in step parameters.

1.6.2 Environment File Functions

The environment.py module may define code to run before and after certain events during your testing:

before_step(context, step), after_step(context, step) These run before and after every step. The step passed in
is an instance of Step.

before_scenario(context, scenario), after_scenario(context, scenario) These run before and after each sce-
nario is run. The scenario passed in is an instance of Scenario.

before_feature(context, feature), after_feature(context, feature) These run before and after each feature file is
exercised. The feature passed in is an instance of Feature.

before_tag(context, tag), after_tag(context, tag) These run before and after a section tagged with the given
name. They are invoked for each tag encountered in the order they’re found in the feature file. See Control-
ling Things With Tags. The tag passed in is an instance of Tag and because it’s a subclass of string you can
do simple tests like:

-- ASSUMING: tags @browser.chrome or @browser.any are used.
if tag.startswith("browser."):

browser_type = tag.replace("browser.", "", 1)
if browser_type == "chrome":

context.browser = webdriver.Chrome()
else:

context.browser = webdriver.PlainVanilla()

before_all(context), after_all(context) These run before and after the whole shooting match.

1.6. Behave API Reference 33

behave Documentation, Release 1.2.6

Some Useful Environment Ideas

Here’s some ideas for things you could use the environment for.

Logging Setup

The following recipe works in all cases (log-capture on or off). If you want to use/configure logging, you should
use the following snippet:

-- FILE:features/environment.py
def before_all(context):

-- SET LOG LEVEL: behave --logging-level=ERROR ...
on behave command-line or in "behave.ini".
context.config.setup_logging()

-- ALTERNATIVE: Setup logging with a configuration file.
context.config.setup_logging(configfile="behave_logging.ini")

Capture Logging in Hooks

If you wish to capture any logging generated during an environment hook function’s invocation, you may use the
capture() decorator, like:

-- FILE:features/environment.py
from behave.log_capture import capture

@capture
def after_scenario(context):

...

This will capture any logging done during the call to after_scenario and print it out.

Detecting that user code overwrites behave Context attributes

The context variable in all cases is an instance of behave.runner.Context.

class behave.runner.Context(runner)
Hold contextual information during the running of tests.

This object is a place to store information related to the tests you’re running. You may add arbitrary attributes
to it of whatever value you need.

During the running of your tests the object will have additional layers of namespace added and removed
automatically. There is a “root” namespace and additional namespaces for features and scenarios.

Certain names are used by behave; be wary of using them yourself as behave may overwrite the value you
set. These names are:

feature
This is set when we start testing a new feature and holds a Feature. It will not be present outside of
a feature (i.e. within the scope of the environment before_all and after_all).

scenario
This is set when we start testing a new scenario (including the individual scenarios of a scenario
outline) and holds a Scenario. It will not be present outside of the scope of a scenario.

tags
The current set of active tags (as a Python set containing instances of Tag which are basically just
glorified strings) combined from the feature and scenario. This attribute will not be present outside of
a feature scope.

34 Chapter 1. Contents

behave Documentation, Release 1.2.6

aborted
This is set to true in the root namespace when the user aborts a test run (KeyboardInterrupt
exception). Initially: False.

failed
This is set to true in the root namespace as soon as a step fails. Initially: False.

table
This is set at the step level and holds any Table associated with the step.

text
This is set at the step level and holds any multiline text associated with the step.

config
The configuration of behave as determined by configuration files and command-line options. The
attributes of this object are the same as the configuration file section names.

active_outline
This is set for each scenario in a scenario outline and references the Row that is active for the current
scenario. It is present mostly for debugging, but may be useful otherwise.

log_capture
If logging capture is enabled then this attribute contains the captured logging as an instance of
LoggingCapture. It is not present if logging is not being captured.

stdout_capture
If stdout capture is enabled then this attribute contains the captured output as a StringIO instance. It is
not present if stdout is not being captured.

stderr_capture
If stderr capture is enabled then this attribute contains the captured output as a StringIO instance. It is
not present if stderr is not being captured.

If an attempt made by user code to overwrite one of these variables, or indeed by behave to overwite a
user-set variable, then a behave.runner.ContextMaskWarning warning will be raised.

You may use the “in” operator to test whether a certain value has been set on the context, for example:

“feature” in context

checks whether there is a “feature” value in the context.

Values may be deleted from the context using “del” but only at the level they are set. You can’t delete a
value set by a feature at a scenario level but you can delete a value set for a scenario in that scenario.

add_cleanup(cleanup_func, *args, **kwargs)
Adds a cleanup function that is called when Context._pop() is called. This is intended for user-
cleanups.

Parameters

• cleanup_func – Callable function

• args – Args for cleanup_func() call (optional).

• kwargs – Kwargs for cleanup_func() call (optional).

execute_steps(steps_text)
The steps identified in the “steps” text string will be parsed and executed in turn just as though they
were defined in a feature file.

If the execute_steps call fails (either through error or failure assertion) then the step invoking it will
need to catch the resulting exceptions.

Parameters steps_text – Text with the Gherkin steps to execute (as string).

Returns True, if the steps executed successfully.

Raises AssertionError, if a step failure occurs.

1.6. Behave API Reference 35

https://docs.python.org/3/library/exceptions.html#KeyboardInterrupt
behave.html#configuration-files

behave Documentation, Release 1.2.6

Raises ValueError, if invoked without a feature context.

use_with_user_mode()
Provides a context manager for using the context in USER mode.

class behave.runner.ContextMaskWarning
Raised if a context variable is being overwritten in some situations.

If the variable was originally set by user code then this will be raised if behave overwites the value.

If the variable was originally set by behave then this will be raised if user code overwites the value.

1.6.3 Fixtures

Provide a Fixture

behave.fixture.fixture(func=None, name=None, pattern=None)
Fixture decorator (currently mostly syntactic sugar).

-- FILE: features/environment.py
CASE FIXTURE-GENERATOR-FUNCTION (like @contextlib.contextmanager):
@fixture
def foo(context, *args, **kwargs):

the_fixture = setup_fixture_foo(*args, **kwargs)
context.foo = the_fixture
yield the_fixture
cleanup_fixture_foo(the_fixture)

CASE FIXTURE-FUNCTION: No cleanup or cleanup via context-cleanup.
@fixture(name="fixture.bar")
def bar(context, *args, **kwargs):

the_fixture = setup_fixture_bar(*args, **kwargs)
context.bar = the_fixture
context.add_cleanup(cleanup_fixture_bar, the_fixture.cleanup)
return the_fixture

Parameters name – Specifies the fixture tag name (as string).

See also:

• contextlib.contextmanager() decorator

• @pytest.fixture

Use Fixtures

behave.fixture.use_fixture(fixture_func, context, *fixture_args, **fixture_kwargs)
Use fixture (function) and call it to perform its setup-part.

The fixture-function is similar to a contextlib.contextmanager() (and contains a yield-statement
to seperate setup and cleanup part). If it contains a yield-statement, it registers a context-cleanup function
to the context object to perform the fixture-cleanup at the end of the current scoped when the context layer
is removed (and all context-cleanup functions are called).

Therefore, fixture-cleanup is performed after scenario, feature or test-run (depending when its fixture-setup
is performed).

-- FILE: behave4my_project/fixtures.py (or: features/environment.py)
from behave import fixture
from somewhere.browser import FirefoxBrowser

(continues on next page)

36 Chapter 1. Contents

https://docs.python.org/3/library/contextlib.html#contextlib.contextmanager
https://docs.pytest.org/en/latest/fixture.html
https://docs.python.org/3/library/contextlib.html#contextlib.contextmanager

behave Documentation, Release 1.2.6

(continued from previous page)

@fixture(name="fixture.browser.firefox")
def browser_firefox(context, *args, **kwargs):

-- SETUP-FIXTURE PART:
context.browser = FirefoxBrowser(*args, **kwargs)
yield context.browser
-- CLEANUP-FIXTURE PART:
context.browser.shutdown()

-- FILE: features/environment.py
from behave import use_fixture
from behave4my_project.fixtures import browser_firefox

def before_tag(context, tag):
if tag == "fixture.browser.firefox":

use_fixture(browser_firefox, context, timeout=10)

Parameters

• fixture_func – Fixture function to use.

• context – Context object to use

• fixture_kwargs – Positional args, passed to the fixture function.

• fixture_kwargs – Additional kwargs, passed to the fixture function.

Returns Setup result object (may be None).

behave.fixture.use_fixture_by_tag(tag, context, fixture_registry)
Process any fixture-tag to perform use_fixture() for its fixture. If the fixture-tag is known, the fixture
data is retrieved from the fixture registry.

-- FILE: features/environment.py
from behave.fixture import use_fixture_by_tag
from behave4my_project.fixtures import browser_firefox, browser_chrome

-- SCHEMA 1: fixture_func
fixture_registry1 = {

"fixture.browser.firefox": browser_firefox,
"fixture.browser.chrome": browser_chrome,

}
-- SCHEMA 2: fixture_func, fixture_args, fixture_kwargs
fixture_registry2 = {

"fixture.browser.firefox": (browser_firefox, (), dict(timeout=10)),
"fixture.browser.chrome": (browser_chrome, (), dict(timeout=12)),

}

def before_tag(context, tag):
if tag.startswith("fixture."):

return use_fixture_by_tag(tag, context, fixture_registry1):
-- MORE: Tag processing steps ...

Parameters

• tag – Fixture tag to process.

• context – Runtime context object, used for use_fixture().

• fixture_registry – Registry maps fixture-tag to fixture data.

Returns Fixture-setup result (same as: use_fixture())

Raises

1.6. Behave API Reference 37

behave Documentation, Release 1.2.6

• LookupError – If fixture-tag/fixture is unknown.

• ValueError – If fixture data type is not supported.

behave.fixture.use_composite_fixture_with(context, fixture_funcs_with_params)
Helper function when complex fixtures should be created and safe-cleanup is needed even if an setup-
fixture-error occurs.

This function ensures that fixture-cleanup is performed for every fixture that was setup before the setup-error
occured.

-- BAD-EXAMPLE: Simplistic composite-fixture
NOTE: Created fixtures (fixture1) are not cleaned up.
@fixture
def foo_and_bad0(context, *args, **kwargs):

the_fixture1 = setup_fixture_foo(*args, **kwargs)
the_fixture2 = setup_fixture_bar_with_error("OOPS-HERE")
yield (the_fixture1, the_fixture2) # NOT_REACHED.
-- NOT_REACHED: Due to fixture2-setup-error.
the_fixture1.cleanup() # NOT-CALLED (SAD).
the_fixture2.cleanup() # OOPS, the_fixture2 is None (if called).

-- GOOD-EXAMPLE: Sane composite-fixture
NOTE: Fixture foo.cleanup() occurs even after fixture2-setup-error.
@fixture
def foo(context, *args, **kwargs):

the_fixture = setup_fixture_foo(*args, **kwargs)
yield the_fixture
cleanup_fixture_foo(the_fixture)

@fixture
def bad_with_setup_error(context, *args, **kwargs):

raise RuntimeError("BAD-FIXTURE-SETUP")

-- SOLUTION 1: With use_fixture()
@fixture
def foo_and_bad1(context, *args, **kwargs):

the_fixture1 = use_fixture(foo, context, *args, **kwargs)
the_fixture2 = use_fixture(bad_with_setup_error, context, "OOPS")
return (the_fixture1, the_fixture2) # NOT_REACHED

-- SOLUTION 2: With use_composite_fixture_with()
@fixture
def foo_and_bad2(context, *args, **kwargs):

the_fixture = use_composite_fixture_with(context, [
fixture_call_params(foo, *args, **kwargs),
fixture_call_params(bad_with_setup_error, "OOPS")

])
return the_fixture

Parameters

• context – Runtime context object, used for all fixtures.

• fixture_funcs_with_params – List of fixture functions with params.

Returns List of created fixture objects.

1.6.4 Runner Operation

Given all the code that could be run by behave, this is the order in which that code is invoked (if they exist.)

38 Chapter 1. Contents

https://docs.python.org/3/library/exceptions.html#LookupError
https://docs.python.org/3/library/exceptions.html#ValueError

behave Documentation, Release 1.2.6

before_all
for feature in all_features:

before_feature
for scenario in feature.scenarios:

before_scenario
for step in scenario.steps:

before_step
step.run()

after_step
after_scenario

after_feature
after_all

If the feature contains scenario outlines then there is an additional loop over all the scenarios in the outline making
the running look like this:

before_all
for feature in all_features:

before_feature
for outline in feature.scenarios:

for scenario in outline.scenarios:
before_scenario
for step in scenario.steps:

before_step
step.run()

after_step
after_scenario

after_feature
after_all

1.6.5 Model Objects

The feature, scenario and step objects represent the information parsed from the feature file. They have a number
of common attributes:

keyword “Feature”, “Scenario”, “Given”, etc.

name The name of the step (the text after the keyword.)

filename and line The file name (or “<string>”) and line number of the statement.

The structure of model objects parsed from a feature file will typically be:

Tag (as Feature.tags)
Feature : TaggableModelElement

Description (as Feature.description)

Background
Step

Table (as Step.table)
MultiLineText (as Step.text)

Tag (as Scenario.tags)
Scenario : TaggableModelElement

Description (as Scenario.description)
Step

Table (as Step.table)
MultiLineText (as Step.text)

Tag (as ScenarioOutline.tags)
ScenarioOutline : TaggableModelElement

1.6. Behave API Reference 39

behave Documentation, Release 1.2.6

Description (as ScenarioOutline.description)
Step

Table (as Step.table)
MultiLineText (as Step.text)

Examples
Table

class behave.model.Feature(filename, line, keyword, name, tags=None, description=None, sce-
narios=None, background=None, language=None)

A feature parsed from a feature file.

The attributes are:

keyword
This is the keyword as seen in the feature file. In English this will be “Feature”.

name
The name of the feature (the text after “Feature”.)

description
The description of the feature as seen in the feature file. This is stored as a list of text lines.

background
The Background for this feature, if any.

scenarios
A list of Scenario making up this feature.

tags
A list of @tags (as Tag which are basically glorified strings) attached to the feature. See Controlling
Things With Tags.

status
Read-Only. A summary status of the feature’s run. If read before the feature is fully tested it will
return “untested” otherwise it will return one of:

Status.untested The feature was has not been completely tested yet.

Status.skipped One or more steps of this feature was passed over during testing.

Status.passed The feature was tested successfully.

Status.failed One or more steps of this feature failed.

Changed in version 1.2.6: Use Status enum class (was: string).

hook_failed
Indicates if a hook failure occured while running this feature.

New in version 1.2.6.

duration
The time, in seconds, that it took to test this feature. If read before the feature is tested it will return
0.0.

filename
The file name (or “<string>”) of the feature file where the feature was found.

line
The line number of the feature file where the feature was found.

language
Indicates which spoken language (English, French, German, ..) was used for parsing the feature file
and its keywords. The I18N language code indicates which language is used. This corresponds to the
language tag at the beginning of the feature file.

New in version 1.2.6.

40 Chapter 1. Contents

gherkin.html#features

behave Documentation, Release 1.2.6

class behave.model.Background(filename, line, keyword, name, steps=None)
A background parsed from a feature file.

The attributes are:

keyword
This is the keyword as seen in the feature file. In English this will typically be “Background”.

name
The name of the background (the text after “Background:”.)

steps
A list of Step making up this background.

duration
The time, in seconds, that it took to run this background. If read before the background is run it will
return 0.0.

filename
The file name (or “<string>”) of the feature file where the background was found.

line
The line number of the feature file where the background was found.

class behave.model.Scenario(filename, line, keyword, name, tags=None, steps=None, descrip-
tion=None)

A scenario parsed from a feature file.

The attributes are:

keyword
This is the keyword as seen in the feature file. In English this will typically be “Scenario”.

name
The name of the scenario (the text after “Scenario:”.)

description
The description of the scenario as seen in the feature file. This is stored as a list of text lines.

feature
The Feature this scenario belongs to.

steps
A list of Step making up this scenario.

tags
A list of @tags (as Tag which are basically glorified strings) attached to the scenario. See Controlling
Things With Tags.

status
Read-Only. A summary status of the scenario’s run. If read before the scenario is fully tested it will
return “untested” otherwise it will return one of:

Status.untested The scenario was has not been completely tested yet.

Status.skipped One or more steps of this scenario was passed over during testing.

Status.passed The scenario was tested successfully.

Status.failed One or more steps of this scenario failed.

Changed in version 1.2.6: Use Status enum class (was: string)

hook_failed
Indicates if a hook failure occured while running this scenario.

New in version 1.2.6.

1.6. Behave API Reference 41

gherkin.html#backgrounds
gherkin.html#scenarios

behave Documentation, Release 1.2.6

duration
The time, in seconds, that it took to test this scenario. If read before the scenario is tested it will return
0.0.

filename
The file name (or “<string>”) of the feature file where the scenario was found.

line
The line number of the feature file where the scenario was found.

class behave.model.ScenarioOutline(filename, line, keyword, name, tags=None,
steps=None, examples=None, description=None)

A scenario outline parsed from a feature file.

A scenario outline extends the existing Scenario class with the addition of the Examples tables of data
from the feature file.

The attributes are:

keyword
This is the keyword as seen in the feature file. In English this will typically be “Scenario Outline”.

name
The name of the scenario (the text after “Scenario Outline:”.)

description
The description of the scenario outline as seen in the feature file. This is stored as a list of text lines.

feature
The Feature this scenario outline belongs to.

steps
A list of Step making up this scenario outline.

examples
A list of Examples used by this scenario outline.

tags
A list of @tags (as Tag which are basically glorified strings) attached to the scenario. See Controlling
Things With Tags.

status
Read-Only. A summary status of the scenario outlines’s run. If read before the scenario is fully tested
it will return “untested” otherwise it will return one of:

Status.untested The scenario was has not been completely tested yet.

Status.skipped One or more scenarios of this outline was passed over during testing.

Status.passed The scenario was tested successfully.

Status.failed

One or more scenarios of this outline failed.

Changed in version 1.2.6: Use Status enum class (was: string)

duration
The time, in seconds, that it took to test the scenarios of this outline. If read before the scenarios are
tested it will return 0.0.

filename
The file name (or “<string>”) of the feature file where the scenario was found.

line
The line number of the feature file where the scenario was found.

class behave.model.Examples(filename, line, keyword, name, tags=None, table=None)
A table parsed from a scenario outline in a feature file.

42 Chapter 1. Contents

gherkin.html#scenario-outlines
gherkin.html#scenario-outlines
gherkin.html#scenario-outlines

behave Documentation, Release 1.2.6

The attributes are:

keyword
This is the keyword as seen in the feature file. In English this will typically be “Example”.

name
The name of the example (the text after “Example:”.)

table
An instance of Table that came with the example in the feature file.

filename
The file name (or “<string>”) of the feature file where the example was found.

line
The line number of the feature file where the example was found.

class behave.model.Tag
Tags appear may be associated with Features or Scenarios.

They’re a subclass of regular strings (unicode pre-Python 3) with an additional line number attribute
(where the tag was seen in the source feature file.

See Controlling Things With Tags.

class behave.model.Step(filename, line, keyword, step_type, name, text=None, table=None)
A single step parsed from a feature file.

The attributes are:

keyword
This is the keyword as seen in the feature file. In English this will typically be “Given”, “When”,
“Then” or a number of other words.

name
The name of the step (the text after “Given” etc.)

step_type
The type of step as determined by the keyword. If the keyword is “and” then the previous keyword in
the feature file will determine this step’s step_type.

text
An instance of Text that came with the step in the feature file.

table
An instance of Table that came with the step in the feature file.

status
Read-Only. A summary status of the step’s run. If read before the step is tested it will return “untested”
otherwise it will return one of:

Status.untested This step was not run (yet).

Status.skipped This step was skipped during testing.

Status.passed The step was tested successfully.

Status.failed The step failed.

Status.undefined The step has no matching step implementation.

Changed in version Use: Status enum class (was: string).

hook_failed
Indicates if a hook failure occured while running this step.

New in version 1.2.6.

duration
The time, in seconds, that it took to test this step. If read before the step is tested it will return 0.0.

1.6. Behave API Reference 43

gherkin.html#steps

behave Documentation, Release 1.2.6

error_message
If the step failed then this will hold any error information, as a single string. It will otherwise be None.

Changed in version 1.2.6: (moved to base class)

filename
The file name (or “<string>”) of the feature file where the step was found.

line
The line number of the feature file where the step was found.

Tables may be associated with either Examples or Steps:

class behave.model.Table(headings, line=None, rows=None)
A table extracted from a feature file.

Table instance data is accessible using a number of methods:

iteration Iterating over the Table will yield the Row instances from the .rows attribute.

indexed access Individual rows may be accessed directly by index on the Table instance; table[0] gives the
first non-heading row and table[-1] gives the last row.

The attributes are:

headings
The headings of the table as a list of strings.

rows
An list of instances of Row that make up the body of the table in the feature file.

Tables are also comparable, for what that’s worth. Headings and row data are compared.

class behave.model.Row(headings, cells, line=None, comments=None)
One row of a table parsed from a feature file.

Row data is accessible using a number of methods:

iteration Iterating over the Row will yield the individual cells as strings.

named access Individual cells may be accessed by heading name; row[“name”] would give the cell value
for the column with heading “name”.

indexed access Individual cells may be accessed directly by index on the Row instance; row[0] gives the
first cell and row[-1] gives the last cell.

The attributes are:

cells
The list of strings that form the cells of this row.

headings
The headings of the table as a list of strings.

Rows are also comparable, for what that’s worth. Only the cells are compared.

And Text may be associated with Steps:

class behave.model.Text
Store multiline text from a Step definition.

The attributes are:

value
The actual text parsed from the feature file.

content_type
Currently only “text/plain”.

44 Chapter 1. Contents

gherkin.html#table
gherkin.html#table

behave Documentation, Release 1.2.6

1.6.6 Logging Capture

The logging capture behave uses by default is implemented by the class LoggingCapture. It has methods

class behave.log_capture.LoggingCapture(config, level=None)
Capture logging events in a memory buffer for later display or query.

Captured logging events are stored on the attribute buffer:

buffer
This is a list of captured logging events as logging.LogRecords.

By default the format of the messages will be:

'%(levelname)s:%(name)s:%(message)s'

This may be overridden using standard logging formatter names in the configuration variable
logging_format.

The level of logging captured is set to logging.NOTSET by default. You may override this using the
configuration setting logging_level (which is set to a level name.)

Finally there may be filtering of logging events specified by the configuration variable logging_filter.

abandon()
Turn off logging capture.

If other handlers were removed by inveigle() then they are reinstated.

any_errors()
Search through the buffer for any ERROR or CRITICAL events.

Returns boolean indicating whether a match was found.

find_event(pattern)
Search through the buffer for a message that matches the given regular expression.

Returns boolean indicating whether a match was found.

flush()
Override to implement custom flushing behaviour.

This version just zaps the buffer to empty.

inveigle()
Turn on logging capture by replacing all existing handlers configured in the logging module.

If the config var logging_clear_handlers is set then we also remove all existing handlers.

We also set the level of the root logger.

The opposite of this is abandon().

The log_capture module also defines a handy logging capture decorator that’s intended to be used on your envi-
ronment file functions.

behave.log_capture.capture(*args, **kw)
Decorator to wrap an environment file function in log file capture.

It configures the logging capture using the behave context - the first argument to the function being decorated
(so don’t use this to decorate something that doesn’t have context as the first argument.)

The basic usage is:

The function prints any captured logging (at the level determined by the log_level configuration setting)
directly to stdout, regardless of error conditions.

It is mostly useful for debugging in situations where you are seeing a message like:

1.6. Behave API Reference 45

http://docs.python.org/library/logging.html#logrecord-objects
behave.html#command-line-arguments

behave Documentation, Release 1.2.6

No handlers could be found for logger "name"

The decorator takes an optional “level” keyword argument which limits the level of logging captured, over-
riding the level in the run’s configuration:

This would limit the logging captured to just ERROR and above, and thus only display logged events if they
are interesting.

1.7 Fixtures

A common task during test execution is to:

• setup a functionality when a test-scope is entered

• cleanup (or teardown) the functionality at the end of the test-scope

Fixtures are provided as concept to simplify this setup/cleanup task in behave.

1.7.1 Providing a Fixture

-- FILE: behave4my_project/fixtures.py (or in: features/environment.py)
from behave import fixture
from somewhere.browser.firefox import FirefoxBrowser

-- FIXTURE-VARIANT 1: Use generator-function
@fixture
def browser_firefox(context, timeout=30, **kwargs):

-- SETUP-FIXTURE PART:
context.browser = FirefoxBrowser(timeout, **kwargs)
yield context.browser
-- CLEANUP-FIXTURE PART:
context.browser.shutdown()

-- FIXTURE-VARIANT 2: Use normal function
from somewhere.browser.chrome import ChromeBrowser

@fixture
def browser_chrome(context, timeout=30, **kwargs):

-- SETUP-FIXTURE PART: And register as context-cleanup task.
browser = ChromeBrowser(timeout, **kwargs)
context.browser = browser
context.add_cleanup(browser.shutdown)
return browser
-- CLEANUP-FIXTURE PART: browser.shutdown()
Fixture-cleanup is called when current context-layer is removed.

See also:

A fixture is similar to:

• a contextlib.contextmanager()

• a pytest.fixture

• the scope guard idiom

1.7.2 Using a Fixture

In many cases, the usage of a fixture is triggered by the fixture-tag in a feature file. The fixture-tag
marks that a fixture should be used in this scenario/feature (as test-scope).

46 Chapter 1. Contents

https://github.com/behave/behave
https://docs.python.org/3/library/contextlib.html#contextlib.contextmanager
https://docs.pytest.org/en/latest/fixture.html
https://en.wikibooks.org/wiki/More_C++_Idioms/Scope_Guard

behave Documentation, Release 1.2.6

-- FILE: features/use_fixture1.feature
Feature: Use Fixture on Scenario Level

@fixture.browser.firefox
Scenario: Use Web Browser Firefox

Given I load web page "https://somewhere.web"
...

-- AFTER-SCENARIO: Cleanup fixture.browser.firefox

-- FILE: features/use_fixture2.feature
@fixture.browser.firefox
Feature: Use Fixture on Feature Level

Scenario: Use Web Browser Firefox
Given I load web page "https://somewhere.web"
...

Scenario: Another Browser Test
...

-- AFTER-FEATURE: Cleanup fixture.browser.firefox

A fixture can be used by calling the use_fixture() function. The use_fixture() call performs the
SETUP-FIXTURE part and returns the setup result. In addition, it ensures that CLEANUP-FIXTURE part
is called later-on when the current context-layer is removed. Therefore, any manual cleanup handling in the
after_tag() hook is not necessary.

-- FILE: features/environment.py
from behave import use_fixture
from behave4my_project.fixtures import browser_firefox

def before_tag(context, tag):
if tag == "fixture.browser.firefox":

use_fixture(browser_firefox, context, timeout=10)

Realistic Example

A more realistic example by using a fixture registry is shown below:

-- FILE: features/environment.py
from behave.fixture import use_fixture_by_tag, fixture_call_params
from behave4my_project.fixtures import browser_firefox, browser_chrome

-- REGISTRY DATA SCHEMA 1: fixture_func
fixture_registry1 = {

"fixture.browser.firefox": browser_firefox,
"fixture.browser.chrome": browser_chrome,

}
-- REGISTRY DATA SCHEMA 2: (fixture_func, fixture_args, fixture_kwargs)
fixture_registry2 = {

"fixture.browser.firefox": fixture_call_params(browser_firefox),
"fixture.browser.chrome": fixture_call_params(browser_chrome, timeout=12),

}

def before_tag(context, tag):
if tag.startswith("fixture."):

return use_fixture_by_tag(tag, context, fixture_registry1):
-- MORE: Tag processing steps ...

1.7. Fixtures 47

behave Documentation, Release 1.2.6

-- FILE: behave/fixture.py
...
def use_fixture_by_tag(tag, context, fixture_registry):

fixture_data = fixture_registry.get(tag, None)
if fixture_data is None:

raise LookupError("Unknown fixture-tag: %s" % tag)

-- FOR DATA SCHEMA 1:
fixture_func = fixture_data
return use_fixture(fixture_func, context)

-- FOR DATA SCHEMA 2:
fixture_func, fixture_args, fixture_kwargs = fixture_data
return use_fixture(fixture_func, context, *fixture_args, **fixture_kwargs)

Hint: Naming Convention for Fixture Tags

Fixture tags should start with "@fixture.*" prefix to improve readability and understandibilty in feature files
(Gherkin).

Tags are used for different purposes. Therefore, it should be clear when a fixture-tag is used.

1.7.3 Fixture Cleanup Points

The point when a fixture-cleanup is performed depends on the scope where use_fixture() is called (and the
fixture-setup is performed).

Context
Layer

Fixture-Setup Point Fixture-Cleanup Point

test run In before_all()
hook

After after_all() at end of test-run.

feature In
before_feature()

After after_feature(), at end of feature.

feature In before_tag() After after_feature() for feature tag.
scenario In

before_scenario()
After after_scenario(), at end of scenario.

scenario In before_tag() After after_scenario() for scenario tag.
scenario In a step After after_scenario(). Fixture is usable until end of sce-

nario.

1.7.4 Fixture Setup/Cleanup Semantics

If an error occurs during fixture-setup (meaning an exception is raised):

• Feature/scenario execution is aborted

• Any remaining fixture-setups are skipped

• After feature/scenario hooks are processed

• All fixture-cleanups and context cleanups are performed

• The feature/scenario is marked as failed

If an error occurs during fixture-cleanup (meaning an exception is raised):

• All remaining fixture-cleanups and context cleanups are performed

• First cleanup-error is reraised to pass failure to user (test runner)

48 Chapter 1. Contents

behave Documentation, Release 1.2.6

• The feature/scenario is marked as failed

1.7.5 Ensure Fixture Cleanups with Fixture Setup Errors

Fixture-setup errors are special because a cleanup of a fixture is in many cases not necessary (or rather difficult
because the fixture object is only partly created, etc.). Therefore, if an error occurs during fixture-setup (meaning:
an exception is raised), the fixture-cleanup part is normally not called.

If you need to ensure that the fixture-cleanup is performed, you need to provide a slightly different fixture imple-
mentation:

-- FILE: behave4my_project/fixtures.py (or: features/environment.py)
from behave import fixture
from somewhere.browser.firefox import FirefoxBrowser

def setup_fixture_part2_with_error(arg):
raise RuntimeError("OOPS-FIXTURE-SETUP-ERROR-HERE)

-- FIXTURE-VARIANT 1: Use generator-function with try/finally.
@fixture
def browser_firefox(context, timeout=30, **kwargs):

try:
browser = FirefoxBrowser(timeout, **kwargs)
browser.part2 = setup_fixture_part2_with_error("OOPS")
context.browser = browser # NOT_REACHED
yield browser
-- NORMAL FIXTURE-CLEANUP PART: NOT_REACHED due to setup-error.

finally:
browser.shutdown() # -- CLEANUP: When generator-function is left.

-- FIXTURE-VARIANT 2: Use normal function and register cleanup-task early.
from somewhere.browser.chrome import ChromeBrowser

@fixture
def browser_chrome(context, timeout=30, **kwargs):

browser = ChromeBrowser(timeout, **kwargs)
context.browser = browser
context.add_cleanup(browser.shutdown) # -- ENSURE-CLEANUP EARLY
browser.part2 = setup_fixture_part2_with_error("OOPS")
return browser # NOT_REACHED
-- CLEANUP: browser.shutdown() when context-layer is removed.

Note: An fixture-setup-error that occurs when the browser object is created, is not covered by these solutions and
not so easy to solve.

1.7.6 Composite Fixtures

The last section already describes some problems when you use complex or composite fixtures. It must be ensured
that cleanup of already created fixture parts is performed even when errors occur late in the creation of a composite
fixture. This is basically a scope guard problem.

Solution 1:

-- FILE: behave4my_project/fixtures.py
SOLUTION 1: Use "use_fixture()" to ensure cleanup even in case of errors.
from behave import fixture, use_fixture

(continues on next page)

1.7. Fixtures 49

https://en.wikibooks.org/wiki/More_C++_Idioms/Scope_Guard

behave Documentation, Release 1.2.6

(continued from previous page)

@fixture
def foo(context, *args, **kwargs):

pass # -- FIXTURE IMPLEMENTATION: Not of interest here.

@fixture
def bar(context, *args, **kwargs):

pass # -- FIXTURE IMPLEMENTATION: Not of interest here.

-- SOLUTION: With use_fixture()
ENSURES: foo-fixture is cleaned up even when setup-error occurs later.
@fixture
def composite1(context, *args, **kwargs):

the_fixture1 = use_fixture(foo, context)
the_fixture2 = use_fixture(bar, context)
return [the_fixture1, the_fixture2]

Solution 2:

-- ALTERNATIVE SOLUTION: With use_composite_fixture_with()
from behave import fixture
from behave.fixture import use_composite_fixture_with, fixture_call_params

@fixture
def composite2(context, *args, **kwargs):

the_composite = use_composite_fixture_with(context, [
fixture_call_params(foo, name="foo"),
fixture_call_params(bar, name="bar"),

])
return the_composite

1.8 Django Test Integration

There are now at least 2 projects that integrate Django and behave. Both use a LiveServerTestCase to spin up
a runserver for the tests automatically, and shut it down when done with the test run. The approach used for
integrating Django, though, varies slightly.

behave-django Provides a dedicated management command. Easy, automatic integration (thanks to monkey
patching). Behave tests are run with python manage.py behave. Allows running tests against an
existing database as a special feature. See setup behave-django and usage instructions.

django-behave Provides a Django-specific TestRunner for Behave, which is set with the TEST_RUNNER prop-
erty in your settings. Behave tests are run with the usual python manage.py test <app_name>
by default. See setup django-behave instructions.

1.8.1 Manual Integration

Alternatively, you can integrate Django using the following boilerplate code in your environment.py file:

-- FILE: my_django/behave_fixtures.py
from behave import fixture
import django
from django.test.runner import DiscoverRunner
from django.test.testcases import LiveServerTestCase

@fixture
(continues on next page)

50 Chapter 1. Contents

https://www.djangoproject.com
https://pypi.python.org/pypi/behave
https://docs.djangoproject.com/en/1.8/topics/testing/tools/#liveservertestcase
https://pypi.python.org/pypi/behave-django
https://pythonhosted.org/behave-django/installation.html
https://pythonhosted.org/behave-django/usage.html
https://pypi.python.org/pypi/django-behave
https://docs.djangoproject.com/en/1.8/topics/testing/advanced/#using-different-testing-frameworks
https://github.com/django-behave/django-behave/blob/master/README.md#how-to-use

behave Documentation, Release 1.2.6

(continued from previous page)

def django_test_runner(context):
django.setup()
context.test_runner = DiscoverRunner()
context.test_runner.setup_test_environment()
context.old_db_config = context.test_runner.setup_databases()
yield
context.test_runner.teardown_databases(context.old_db_config)
context.test_runner.teardown_test_environment()

@fixture
def django_test_case(context):

context.test_case = LiveServerTestCase
context.test_case.setUpClass()
yield
context.test_case.tearDownClass()
del context.test_case

-- FILE: features/environment.py
from behave import use_fixture
from my_django.behave_fixtures import django_test_runner, django_test_case
import os

os.environ["DJANGO_SETTINGS_MODULE"] = "test_project.settings"

def before_all(context):
use_fixture(django_test_runner, context)

def before_scenario(context, scenario):
use_fixture(django_test_case, context)

Taken from Andrey Zarubin’s blog post “BDD. PyCharm + Python & Django”.

1.8.2 Strategies and Tooling

See Practical Tips on Testing for automation libraries and implementation tips on your BDD tests.

1.9 Flask Test Integration

Integrating your Flask application with behave is done via boilerplate code in your environment.py file.

The Flask documentation on testing explains how to use the Werkzeug test client for running tests in general.

1.9.1 Integration Example

The example below is an integration boilerplate derived from the official Flask documentation, featuring the Flaskr
sample application from the Flask tutorial.

-- FILE: features/environment.py
import os
import tempfile
from behave import fixture, use_fixture
flaskr is the sample application we want to test
from flaskr import app, init_db

@fixture
def flaskr_client(context, *args, **kwargs):

(continues on next page)

1.9. Flask Test Integration 51

https://anvileight.com/blog/2016/04/12/behavior-driven-development-pycharm-python-django/
http://flask.pocoo.org/
https://pypi.python.org/pypi/behave
http://flask.pocoo.org/docs/latest/testing/
http://flask.pocoo.org/docs/latest/tutorial/introduction/
http://flask.pocoo.org/docs/latest/tutorial/introduction/

behave Documentation, Release 1.2.6

(continued from previous page)

context.db, app.config['DATABASE'] = tempfile.mkstemp()
app.testing = True
context.client = app.test_client()
with app.app_context():

init_db()
yield context.client
-- CLEANUP:
os.close(context.db)
os.unlink(app.config['DATABASE'])

def before_feature(context, feature):
-- HINT: Recreate a new flaskr client before each feature is executed.
use_fixture(flaskr_client, context)

Taken and adapted from Ismail Dhorat’s BDD testing example on Flaskr.

1.9.2 Strategies and Tooling

See Practical Tips on Testing for automation libraries and implementation tips on your BDD tests.

1.10 Practical Tips on Testing

This chapter contains a collection of tips on test strategies and tools, such as test automation libraries, that help
you make BDD a successful experience.

1.10.1 Seriously, Don’t Test the User Interface

Warning: While you can use behave to drive the “user interface” (UI) or front-end, interacting with the model
layer or the business logic, e.g. by using a REST API, is often the better choice.

And keep in mind, BDD advises your to test WHAT your application should do and not HOW it is done.

If you want to test/exercise also the “user interface”, it may be a good idea to reuse the feature files, that test
the model layer, by just replacing the test automation layer (meaning mostly the step implementations). This
approach ensures that your feature files are technology-agnostic, meaning they are independent how you interact
with “system under test” (SUT) or “application under test” (AUT).

For example, if you want to use the feature files in the same directory for testing the model layer and the UI layer,
this can be done by using the --stage option, like with:

$ behave --stage=model features/
$ behave --stage=ui features/ # NOTE: Normally used on a subset of features.

See the More Information about Behave chapter for additional hints.

1.10.2 Automation Libraries

With behave you can test anything on your application stack: front-end behavior, RESTful APIs, you can even
drive your unit tests using Gherkin language. Any library that helps you with that you usually integrate by adding
start-up code in before_all() and tear-down code in after_all().

The following examples show you how to interact with your Python application by using the web interface (see
Seriously, Don’t Test the User Interface above to learn about entry points for test automation that may be better
suited for your use case).

52 Chapter 1. Contents

https://github.com/ismaild/flaskr-bdd
https://pypi.python.org/pypi/behave

behave Documentation, Release 1.2.6

Selenium (Example)

To start a web browser for interaction with the front-end using selenium your environment.py may look like
this:

-- FILE: features/environment.py
CONTAINS: Browser fixture setup and teardown
from behave import fixture, use_fixture
from selenium.webdriver import Firefox

@fixture
def browser_firefox(context):

-- BEHAVE-FIXTURE: Similar to @contextlib.contextmanager
context.browser = Firefox()
yield context.browser
-- CLEANUP-FIXTURE PART:
context.browser.quit()

def before_all(context):
use_fixture(browser_firefox, context)
-- NOTE: CLEANUP-FIXTURE is called after after_all() hook.

In your step implementations you can use the context.browser object to access Selenium features. See the
Selenium docs (remote.webdriver) for details. Example using behave-django:

-- FILE: features/steps/browser_steps.py
from behave import given, when, then

@when(u'I visit "{url}"')
def step_impl(context, url):

context.browser.get(context.get_url(url))

Splinter (Example)

To start a web browser for interaction with the front-end using splinter your environment.py may look like
this:

-- FILE: features/environment.py
CONTAINS: Browser fixture setup and teardown
from behave import fixture, use_fixture
from splinter.browser import Browser

@fixture
def splinter_browser(context):

context.browser = Browser()
yield context.browser
context.browser.quit()

def before_all(context):
use_fixture(splinter_browser, context)

In your step implementations you can use the context.browser object to access Splinter features. See the
Splinter docs for details. Example using behave-django:

-- FILE: features/steps/browser_steps.py
from behave import given, when, then

@when(u'I visit "{url}"')
def step_impl(context, url):

context.browser.visit(context.get_url(url))

1.10. Practical Tips on Testing 53

https://pypi.python.org/pypi/selenium
https://seleniumhq.github.io/selenium/docs/api/py/api.html
https://pypi.python.org/pypi/behave-django
https://pypi.python.org/pypi/splinter
http://splinter.readthedocs.io/en/latest/

behave Documentation, Release 1.2.6

Visual Testing

Visually checking your front-end on regression is integrated into behave in a straight-forward manner, too. Ba-
sically, what you do is drive your application using the front-end automation library of your choice (such as
Selenium, Splinter, etc.) to the test location, take a screenshot and compare it with an earlier, approved screenshot
(your “baseline”).

A list of visual testing tools and services is available from Dave Haeffner’s How to Do Visual Testing blog post.

1.11 Comparison With Other Tools

There are other options for doing Gherkin-based BDD in Python. We’ve listed the main ones below and why we
feel you’re better off using behave. Obviously this comes from our point of view and you may disagree. That’s
cool. We’re not worried whichever way you go.

This page may be out of date as the projects mentioned will almost certainly change over time. If anything on this
page is out of date, please contact us.

1.11.1 Cucumber

You can actually use Cucumber to run test code written in Python. It uses “rubypython” (dead) to fire up a Python
interpreter inside the Ruby process though and this can be somewhat brittle. Obviously we prefer to use something
written in Python but if you’ve got an existing workflow based around Cucumber and you have code in multiple
languages, Cucumber may be the one for you.

1.11.2 Lettuce

lettuce is similar to behave in that it’s a fairly straight port of the basic functionality of Cucumber. The main
differences with behave are:

• Single decorator for step definitions, @step.

• The context variable, world, is simply a shared holder of attributes. It never gets cleaned up during the
run.

• Hooks are declared using decorators rather than as simple functions.

• No support for tags.

• Step definition code files can be anywhere in the feature directory hierarchy.

The issues we had with Lettuce that stopped us using it were:

• Lack of tags (which are supported by now, at least since v0.2.20).

• The hooks functionality was patchy. For instance it was very hard to clean up the world variable between
scenario outlines. Behave clears the scenario-level context between outlines automatically.

• Lettuce’s handling of stdout would occasionally cause it to crash mid-run in such a way that cleanup hooks
were never run.

• Lettuce uses import hackery so .pyc files are left around and the module namespace is polluted.

1.11.3 Freshen

freshen is a plugin for nose that implements a Gherkin-style language with Python step definitions. The main
differences with behave are:

• Operates as a plugin for nose, and is thus tied to the nose runner and its output model.

54 Chapter 1. Contents

http://testautomation.applitools.com/post/105435804567/how-to-do-visual-testing-with-selenium
https://pypi.python.org/pypi/lettuce
https://cucumber.io/
https://pypi.python.org/pypi/freshen
https://pypi.python.org/pypi/nose

behave Documentation, Release 1.2.6

• Has some additions to its Gherkin syntax allowing it to specify specific step definition modules for each
feature.

• Has separate context objects for various levels: glc, ftc and scc. These relate to global, feature and
scenario levels respectively.

The issues we had with Freshen that stopped us using it were:

• The integration with the nose runner made it quite hard to properly debug how and why tests were failing.
Quite often you’d get a rather cryptic message with the actual exception having been swallowed.

• The feature-specific step includes could lead to specific sets of step definitions for each feature despite them
warning against doing that.

• The output being handled by nose meant that you couldn’t do cucumber-style output without the addition
of more plugins.

• The context variable names are cryptic and moving context data from one level to another takes a certain
amount of work finding and renaming. The behave context variable is much more flexible.

• Step functions must have unique names, even though they’re decorated to match different strings.

• As with Lettuce, Freshen uses import hackery so .pyc files are left around and the module namespace is
polluted.

• Only Before and no contextual before/after control, thus requiring use of atexit for teardown operations and
no fine-grained control.

1.12 New and Noteworthy

In the good tradition of the Eclipse IDE, a number of news, changes and improvements are described here to
provide better background information about what has changed and how to make use of it.

This page orders the information by newest version first.

1.12.1 Noteworthy in Version 1.2.6

Summary:

• Tagged Examples: Examples in a ScenarioOutline can now have tags.

• Feature model elements have now language attribute based on language tag in feature file (or the default
language tag that was used by the parser).

• Gherkin parser: Supports escaped-pipe in Gherkin table cell value

• Configuration: Supports now to define default tags in configfile

• Configuration: language data is now used as default-language that should be used by the Gherkin parser.
Language tags in the Feature file override this setting.

• Runner: Can continue after a failed step in a scenario

• Runner: Hooks processing handles now exceptions. Hook errors (exception in hook processing) lead now
to scenario failures (even if no step fails).

• Testing support for asynchronuous frameworks or protocols (asyncio based)

• Context-cleanups: Register cleanup functions that are executed at the end of the test-scope (scenario, feature
or test-run) via add_cleanup().

• Fixtures: Simplify setup/cleanup in scenario, feature or test-run

1.12. New and Noteworthy 55

http://www.eclipse.org/
https://docs.python.org/3/library/asyncio.html#module-asyncio

behave Documentation, Release 1.2.6

Scenario Outline Improvements

Tagged Examples

Since behave 1.2.6.dev0

The Gherkin parser (and the model) supports now to use tags with the Examples section in a Scenario
Outline. This functionality can be used to provide multiple Examples sections, for example one section per
testing stage (development, integration testing, system testing, . . .) or one section per test team.

The following feature file provides a simple example of this functionality:

-- FILE: features/tagged_examples.feature
Feature:

Scenario Outline: Wow
Given an employee "<name>"

@develop
Examples: Araxas

name	birthyear
Alice	1985
Bob	1975

@integration
Examples:

| name | birthyear |
| Charly | 1995 |

Note: The generated scenarios from a ScenarioOutline inherit the tags from the ScenarioOutline and its Examples
section:

-- FOR scenario in scenario_outline.scenarios:
scenario.tags = scenario_outline.tags + examples.tags

To run only the first Examples section, you use:

behave --tags=@develop features/tagged_examples.feature

Scenario Outline: Wow -- @1.1 Araxas # features/tagged_examples.feature:7
Given an employee "Alice"

Scenario Outline: Wow -- @1.2 Araxas # features/tagged_examples.feature:8
Given an employee "Bob"

Tagged Examples with Active Tags and Userdata

An even more natural fit is to use tagged examples together with active tags and userdata:

-- FILE: features/tagged_examples2.feature
VARIANT 2: With active tags and userdata.
Feature:

Scenario Outline: Wow
Given an employee "<name>"

@use.with_stage=develop
Examples: Araxas

| name | birthyear |
| Alice | 1985 |

(continues on next page)

56 Chapter 1. Contents

behave Documentation, Release 1.2.6

(continued from previous page)

| Bob | 1975 |

@use.with_stage=integration
Examples:

| name | birthyear |
| Charly | 1995 |

Select the Examples section now by using:

-- VARIANT 1: Use userdata
behave -D stage=integration features/tagged_examples2.feature

-- VARIANT 2: Use stage mechanism
behave --stage=integration features/tagged_examples2.feature

-- FILE: features/environment.py
from behave.tag_matcher import ActiveTagMatcher, setup_active_tag_values
import sys

-- ACTIVE TAG SUPPORT: @use.with_{category}={value}, ...
active_tag_value_provider = {

"stage": "develop",
}
active_tag_matcher = ActiveTagMatcher(active_tag_value_provider)

-- BEHAVE HOOKS:
def before_all(context):

userdata = context.config.userdata
stage = context.config.stage or userdata.get("stage", "develop")
userdata["stage"] = stage
setup_active_tag_values(active_tag_value_provider, userdata)

def before_scenario(context, scenario):
if active_tag_matcher.should_exclude_with(scenario.effective_tags):

sys.stdout.write("ACTIVE-TAG DISABLED: Scenario %s\n" % scenario.name)
scenario.skip(active_tag_matcher.exclude_reason)

Gherkin Parser Improvements

Escaped-Pipe Support in Tables

It is now possible to use the “|” (pipe) symbol in Gherkin tables by escaping it. The pipe symbol is normally used
as column separator in tables.

EXAMPLE:

Scenario: Use escaped-pipe symbol
Given I use table data with:
| name | value |
| alice | one\|two\|three\|four |

Then table data for "alice" is "one|two|three|four"

See also:

• issue.features/issue0302.feature for details

Configuration Improvements

1.12. New and Noteworthy 57

https://github.com/behave/behave/blob/master/issue.features/issue0302.feature

behave Documentation, Release 1.2.6

Language Option

The interpretation of the language-tag comment in feature files (Gherkin) and the configuration lang option
on command-line and in the configuration file changed slightly.

If a language-tag is used in a feature file, it is now prefered over the command-line/configuration file settings.
This is especially useful when your feature files use multiple spoken languages (in different files).

EXAMPLE:

-- FILE: features/french_1.feature
language: fr
Fonctionnalité: Alice

...

-- FILE: behave.ini
[behave]
lang = de # Default (spoken) language to use: German
...

Note: The feature object contains now a language attribute that contains the information which language was
used during Gherkin parsing.

Default Tags

It is now possible to define default tags in the configuration file. Default tags are used when you do
not specify tags on the command-line.

EXAMPLE:

-- FILE: behave.ini
Exclude/skip any feature/scenario with @xfail or @not_implemented tags
[behave]
default_tags = -@xfail -@not_implemented
...

Runner Improvements

Hook Errors cause Failures

The behaviour of hook errors, meaning uncaught exceptions while processing hooks, is changed in this re-
lease. The new behaviour causes the entity (test-run, feature, scenario), for which the hook is executed, to
fail. In addition, a hook error in a before_all(), before_feature(), before_scenario(), and
before_tag() hook causes its corresponding entity to be skipped.

See also:

• features/runner.hook_errors.feature for the detailled specification

Option: Continue after Failed Step in a Scenario

This behaviour is sometimes desired, when you want to see what happens in the remaining steps of a scenario.

EXAMPLE:

58 Chapter 1. Contents

https://github.com/behave/behave/blob/master/features/runner.hook_errors.feature

behave Documentation, Release 1.2.6

-- FILE: features/environment.py
from behave.model import Scenario

def before_all(context):
userdata = context.config.userdata
continue_after_failed = userdata.getbool("runner.continue_after_failed_step",

→˓False)
Scenario.continue_after_failed_step = continue_after_failed

-- ENABLE OPTION: Use userdata on command-line
behave -D runner.continue_after_failed_step=true features/

Note: A failing step normally causes correlated failures in most of the following steps. Therefore, this behaviour
is normally not desired.

See also:

• features/runner.continue_after_failed_step.feature for the detailled specification

Testing asyncio Frameworks

Since behave 1.2.6.dev0

The following support was added to simplify testing asynchronuous framework and protocols that are based on
asyncio module (since Python 3.4).

There are basically two use cases:

• async-steps (with event_loop.run_until_complete() semantics)

• async-dispatch step(s) with async-collect step(s) later on

Async-steps

It is now possible to use async-steps in behave. An async-step is basically a coroutine as step-
implementation for behave. The async-step is wrapped into an event_loop.run_until_complete()
call by using the @async_run_until_complete step-decorator.

This avoids another layer of indirection that would otherwise be necessary, to use the coroutine.

A simple example for the implementation of the async-steps is shown for:

• Python 3.5 with new async/await keywords

• Python 3.4 with @asyncio.coroutine decorator and yield from keyword

-- FILE: features/steps/async_steps35.py
-- REQUIRES: Python >= 3.5
from behave import step
from behave.api.async_step import async_run_until_complete
import asyncio

@step('an async-step waits {duration:f} seconds')
@async_run_until_complete
async def step_async_step_waits_seconds_py35(context, duration):

"""Simple example of a coroutine as async-step (in Python 3.5)"""
await asyncio.sleep(duration)

1.12. New and Noteworthy 59

https://github.com/behave/behave/blob/master/features/runner.continue_after_failed_step.feature
https://docs.python.org/3/library/asyncio.html#module-asyncio

behave Documentation, Release 1.2.6

-- FILE: features/steps/async_steps34.py
-- REQUIRES: Python >= 3.4
from behave import step
from behave.api.async_step import async_run_until_complete
import asyncio

@step('an async-step waits {duration:f} seconds')
@async_run_until_complete
@asyncio.coroutine
def step_async_step_waits_seconds_py34(context, duration):

yield from asyncio.sleep(duration)

When you use the async-step from above in a feature file and run it with behave:

-- TEST-RUN OUTPUT:
$ behave -f plain features/async_run.feature
Feature:

Scenario:
Given an async-step waits 0.3 seconds ... passed in 0.307s

1 feature passed, 0 failed, 0 skipped
1 scenario passed, 0 failed, 0 skipped
1 step passed, 0 failed, 0 skipped, 0 undefined
Took 0m0.307s

Note: The async-step is wrapped with an event_loop.run_until_complete() call. As the timings
show, it actually needs approximatly 0.3 seconds to run.

Async-dispatch and async-collect

The other use case with testing async frameworks is that

• you dispatch one or more async-calls

• you collect (and verify) the results of the async-calls later-on

A simple example of this approach is shown in the following feature file:

-- FILE: features/async_dispatch.feature
@use.with_python.version=3.4
@use.with_python.version=3.5
@use.with_python.version=3.6
Feature:

Scenario:
Given I dispatch an async-call with param "Alice"
And I dispatch an async-call with param "Bob"
Then the collected result of the async-calls is "ALICE, BOB"

When you run this feature file:

-- TEST-RUN OUTPUT:
$ behave -f plain features/async_dispatch.feature
Feature:

Scenario:
Given I dispatch an async-call with param "Alice" ... passed in 0.001s
And I dispatch an async-call with param "Bob" ... passed in 0.000s
Then the collected result of the async-calls is "ALICE, BOB" ... passed in 0.

→˓206s
(continues on next page)

60 Chapter 1. Contents

behave Documentation, Release 1.2.6

(continued from previous page)

1 feature passed, 0 failed, 0 skipped
1 scenario passed, 0 failed, 0 skipped
3 steps passed, 0 failed, 0 skipped, 0 undefined
Took 0m0.208s

Note: The final async-collect step needs approx. 0.2 seconds until the two dispatched async-tasks have finished.
In contrast, the async-dispatch steps basically need no time at all.

An AsyncContext object is used on the context, to hold the event loop information and the async-tasks that are
of interest.

The implementation of the steps from above:

-- FILE: features/steps/async_dispatch_steps.py
REQUIRES: Python 3.4 or newer
-*- coding: UTF-8 -*-
REQUIRES: Python >= 3.5
from behave import given, then, step
from behave.api.async_step import use_or_create_async_context, AsyncContext
from hamcrest import assert_that, equal_to, empty
import asyncio

@asyncio.coroutine
def async_func(param):

yield from asyncio.sleep(0.2)
return str(param).upper()

@given('I dispatch an async-call with param "{param}"')
def step_dispatch_async_call(context, param):

async_context = use_or_create_async_context(context, "async_context1")
task = async_context.loop.create_task(async_func(param))
async_context.tasks.append(task)

@then('the collected result of the async-calls is "{expected}"')
def step_collected_async_call_result_is(context, expected):

async_context = context.async_context1
done, pending = async_context.loop.run_until_complete(

asyncio.wait(async_context.tasks, loop=async_context.loop))

parts = [task.result() for task in done]
joined_result = ", ".join(sorted(parts))
assert_that(joined_result, equal_to(expected))
assert_that(pending, empty())

Context-based Cleanups

It is now possible to register cleanup functions with the context object. This functionality is normally used in:

• hooks (before_all(), before_feature(), before_scenario(), . . .)

• step implementations

• . . .

-- SIGNATURE: Context.add_cleanup(cleanup_func, *args, **kwargs)
CLEANUP CALL EXAMPLES:
context.add_cleanup(cleanup0) # CALLS LATER: cleanup0()
context.add_cleanup(cleanup1, 1, 2) # CALLS LATER: cleanup1(1, 2)

(continues on next page)

1.12. New and Noteworthy 61

behave Documentation, Release 1.2.6

(continued from previous page)

context.add_cleanup(cleanup2, name="Alice") # CALLS LATER: cleanup2(name=
→˓"Alice")
context.add_cleanup(cleanup3, 1, 2, name="Bob") # CALLS LATER: cleanup3(1, 2,
→˓name="Bob")

The registered cleanup will be performed when the context layer is removed. This depends on the the context
layer when the cleanup function was registered (test-run, feature, scenario).

Example:

-- FILE: features/environment.py
def before_all(context):

context.add_cleanup(cleanup_me)
-- ON CLEANUP: Calls cleanup_me()
Called after test-run.

def before_tag(context, tag):
if tag == "foo":

context.foo = setup_foo()
context.add_cleanup(cleanup_foo, context.foo)
-- ON CLEANUP: Calls cleanup_foo(context.foo)
CASE scenario tag: cleanup_foo() will be called after this scenario.
CASE feature tag: cleanup_foo() will be called after this feature.

See also:

For more details, see features/runner.context_cleanup.feature .

Fixtures

Fixtures simplify setup/cleanup tasks that are often needed for testing.

Providing a Fixture

-- FILE: behave4my_project/fixtures.py (or in: features/environment.py)
from behave import fixture
from somewhere.browser.firefox import FirefoxBrowser

-- FIXTURE-VARIANT 1: Use generator-function
@fixture
def browser_firefox(context, timeout=30, **kwargs):

-- SETUP-FIXTURE PART:
context.browser = FirefoxBrowser(timeout, **kwargs)
yield context.browser
-- CLEANUP-FIXTURE PART:
context.browser.shutdown()

Using a Fixture

-- FILE: features/use_fixture1.feature
Feature: Use Fixture on Scenario Level

@fixture.browser.firefox
Scenario: Use Web Browser Firefox

Given I load web page "https://somewhere.web"
...

-- AFTER-SCENARIO: Cleanup fixture.browser.firefox

62 Chapter 1. Contents

https://github.com/behave/behave/blob/master/features/runner.context_cleanup.feature

behave Documentation, Release 1.2.6

-- FILE: features/environment.py
from behave import use_fixture
from behave4my_project.fixtures import browser_firefox

def before_tag(context, tag):
if tag == "fixture.browser.firefox":

use_fixture(browser_firefox, context, timeout=10)

See also:

• Fixtures description for details

• features/fixture.feature

1.12.2 Noteworthy in Version 1.2.5

Scenario Outline Improvements

Better represent Example/Row

Since behave 1.2.5a1

Covers Name annotation, file location

A scenario outline basically a parametrized scenario template. It represents a macro/script that is executed for a
data-driven set of examples (parametrized data). Therefore, a scenario outline generates several scenarios, each
representing one example/row combination.

-- file:features/xxx.feature
Feature:

Scenario Outline: Wow # line 2
Given an employee "<name>"

Examples: Araxas
| name | birthyear |
| Alice | 1985 | # line 7
| Bob | 1975 | # line 8

Examples:
| name | birthyear |
| Charly | 1995 | # line 12

Up to now, the following scenarios were generated from the scenario outline:

Scenario Outline: Wow # features/xxx.feature:2
Given an employee "Alice"

Scenario Outline: Wow # features/xxx.feature:2
Given an employee "Bob"

Scenario Outline: Wow # features/xxx.feature:2
Given an employee "Charly"

Note that all generated scenarios had the:

• same name (scenario_outline.name)

• same file location (scenario_outline.file_location)

From now on, the generated scenarios better represent the example/row combination within a scenario outline:

1.12. New and Noteworthy 63

https://github.com/behave/behave/blob/master/features/fixture.feature

behave Documentation, Release 1.2.6

Scenario Outline: Wow -- @1.1 Araxas # features/xxx.feature:7
Given an employee "Alice"

Scenario Outline: Wow -- @1.2 Araxas # features/xxx.feature:8
Given an employee "Bob"

Scenario Outline: Wow -- @2.1 # features/xxx.feature:12
Given an employee "Charly"

Note that:

• scenario name is now unique for any examples/row combination

• scenario name optionally contains the examples (group) name (if one exists)

• each scenario has a unique file location, based on the row’s file location

Therefore, each generated scenario from a scenario outline can be selected via its file location (and run on its
own). In addition, if one fails, it is now possible to rerun only the failing example/row combination(s).

The name annoations schema for the generated scenarios from above provides the new default name annotation
schema. It can be adapted/overwritten in “behave.ini”:

-- file:behave.ini
[behave]
scenario_outline_annotation_schema = {name} -- @{row.id} {examples.name}

-- REVERT TO: Old naming schema:
scenario_outline_annotation_schema = {name}

The following additional placeholders are provided within a scenario outline to support this functionality. They
can be used anywhere within a scenario outline.

Placeholder Description
examples.name Refers name of the example group, may be an empty string.
examples.index Index of the example group (range=1..N).
row.index Index of the current row within an example group (range=1..R).
row.id Shortcut for schema: “<examples.index>.<row.index>”

Name may contain Placeholders

Since behave 1.2.5a1

A scenario outline can now use placeholders from example/rows in its name or its examples name. When the
scenarios a generated, these placeholders will be replaced with the values of the example/row.

Up to now this behavior did only apply to steps of a scenario outline.

EXAMPLE:

-- file:features/xxx.feature
Feature:

Scenario Outline: Wow <name>-<birthyear> # line 2
Given an employee "<name>"

Examples:
| name | birthyear |
| Alice | 1985 | # line 7
| Bob | 1975 | # line 8

Examples: Benares-<ID>

(continues on next page)

64 Chapter 1. Contents

behave Documentation, Release 1.2.6

(continued from previous page)

| name | birthyear | ID |
| Charly | 1995 | 42 | # line 12

This leads to the following generated scenarios, one for each examples/row combination:

Scenario Outline: Wow Alice-1985 -- @1.1 # features/xxx.feature:7
Given an employee "Alice"

Scenario Outline: Wow Bob-1975 -- @1.2 # features/xxx.feature:8
Given an employee "Bob"

Scenario Outline: Wow Charly-1885 -- @2.1 Benares-42 # features/xxx.feature:12
Given an employee "Charly"

Tags may contain Placeholders

Since behave 1.2.5a1

Tags from a Scenario Outline are also part of the parametrized template. Therefore, you may also use placeholders
in the tags of a Scenario Outline.

Note:

• Placeholder names, that are used in tags, should not contain whitespace.

• Placeholder values, that are used in tags, are transformed to contain no whitespace characters.

EXAMPLE:

-- file:features/xxx.feature
Feature:

@foo.group<examples.index>
@foo.row<row.id>
@foo.name.<name>
Scenario Outline: Wow # line 6
Given an employee "<name>"

Examples: Araxas
| name | birthyear |
| Alice | 1985 | # line 11
| Bob | 1975 | # line 12

Examples: Benares
| name | birthyear | ID |
| Charly | 1995 | 42 | # line 16

This leads to the following generated scenarios, one for each examples/row combination:

@foo.group1 @foo.row1.1 @foo.name.Alice
Scenario Outline: Wow -- @1.1 Araxas # features/xxx.feature:11

Given an employee "Alice"

@foo.group1 @foo.row1.2 @foo.name.Bob
Scenario Outline: Wow -- @1.2 Araxas # features/xxx.feature:12

Given an employee "Bob"

@foo.group2 @foo.row2.1 @foo.name.Charly
(continues on next page)

1.12. New and Noteworthy 65

behave Documentation, Release 1.2.6

(continued from previous page)

Scenario Outline: Wow -- @2.1 Benares # features/xxx.feature:16
Given an employee "Charly"

It is now possible to run only the examples group “Araxas” (examples group 1) by using the select-by-tag mecha-
nism:

$ behave --tags=@foo.group1 -f progress3 features/xxx.feature
... # features/xxx.feature

Wow -- @1.1 Araxas .
Wow -- @1.2 Araxas .

Run examples group via select-by-name

Since behave 1.2.5a1

The improvements on unique generated scenario names for a scenario outline (with name annotation) can now be
used to run all rows of one examples group.

EXAMPLE:

-- file:features/xxx.feature
Feature:

Scenario Outline: Wow # line 2
Given an employee "<name>"

Examples: Araxas
| name | birthyear |
| Alice | 1985 | # line 7
| Bob | 1975 | # line 8

Examples: Benares
| name | birthyear |
| Charly | 1995 | # line 12

This leads to the following generated scenarios (when the feature is executed):

Scenario Outline: Wow -- @1.1 Araxas # features/xxx.feature:7
Given an employee "Alice"

Scenario Outline: Wow -- @1.2 Araxas # features/xxx.feature:8
Given an employee "Bob"

Scenario Outline: Wow -- @2.1 Benares # features/xxx.feature:12
Given an employee "Charly"

You can now run all rows of the “Araxas” examples (group) by selecting it by name (name part or regular expres-
sion):

$ behave --name=Araxas -f progress3 features/xxx.feature
... # features/xxx.feature

Wow -- @1.1 Araxas .
Wow -- @1.2 Araxas .

$ behave --name='-- @.* Araxas' -f progress3 features/xxx.feature
... # features/xxx.feature

Wow -- @1.1 Araxas .
Wow -- @1.2 Araxas .

66 Chapter 1. Contents

behave Documentation, Release 1.2.6

Exclude Feature/Scenario at Runtime

Since behave 1.2.5a1

A test writer can now provide a runtime decision logic to exclude a feature, scenario or scenario outline from a
test run within the following hooks:

• before_feature() for a feature

• before_scenario() for a scenario

• step implementation (normally only: given step)

by using the skip() method before a feature or scenario is run.

-- FILE: features/environment.py
EXAMPLE 1: Exclude scenario from run-set at runtime.
import sys

def should_exclude_scenario(scenario):
-- RUNTIME DECISION LOGIC: Will exclude
* Scenario: Alice
* Scenario: Alice in Wonderland
* Scenario: Bob and Alice2
return "Alice" in scenario.name

def before_scenario(context, scenario):
if should_exclude_scenario(scenario):

scenario.skip() #< EXCLUDE FROM RUN-SET.
-- OR WITH REASON:
reason = "RUNTIME-EXCLUDED"
scenario.skip(reason)

-- FILE: features/steps/my_steps.py
EXAMPLE 2: Skip remaining steps in step implementation.
from behave import given

@given('the assumption "{assumption}" is met')
def step_check_assumption(context, assumption):

if not is_assumption_valid(assumption):
-- SKIP: Remaining steps in current scenario.
context.scenario.skip("OOPS: Assumption not met")
return

-- NORMAL CASE:
...

Test Stages

Since behave 1.2.5a1

Intention Use different Step Implementations for Each Stage

A test stage allows the user to provide different step and environment implementation for each stage. Examples
for test stages are:

• develop (example: development environment with simple database)

• product (example: use the real product and its database)

• systemint (system integration)

• . . .

1.12. New and Noteworthy 67

behave Documentation, Release 1.2.6

Each test stage may have a different test environment and needs to fulfill different testing constraints.

EXAMPLE DIRECTORY LAYOUT (with stage=testlab and default stage):

features/
+-- steps/ # -- Step implementations for default stage.
| +-- foo_steps.py
+-- testlab_steps/ # -- Step implementations for stage=testlab.
| +-- foo_steps.py
+-- environment.py # -- Environment for default stage.
+-- testlab_environment.py # -- Environment for stage=testlab.
+-- *.feature

To use the stage=testlab, you run behave with:

behave --stage=testlab ...

or define the environment variable BEHAVE_STAGE=testlab.

Userdata

Since behave 1.2.5a1

Intention User-specific Configuration Data

The userdata functionality allows a user to provide its own configuration data:

• as command-line option -D name=value or --define name=value

• with the behave configuration file in section behave.userdata

• load more configuration data in before_all() hook

-- FILE: behave.ini
[behave.userdata]
browser = firefox
server = asterix

Note: Command-line definitions override userdata definitions in the configuration file.

If the command-line contains no value part, like in -D NEEDS_CLEANUP, its value is "true".

The userdata settings can be accessed as dictionary in hooks and steps by using the context.config.
userdata dictionary.

-- FILE: features/environment.py
def before_all(context):

browser = context.config.userdata.get("browser", "chrome")
setup_browser(browser)

-- FILE: features/steps/userdata_example_steps.py
@given('I setup the system with the user-specified server"')
def step_setup_system_with_userdata_server(context):

server_host = context.config.userdata.get("server", "beatrix")
context.xxx_client = xxx_protocol.connect(server_host)

-- ADAPT TEST-RUN: With user-specific data settings.
SHELL:
behave -D server=obelix features/
behave --define server=obelix features/

Other examples for user-specific data are:

68 Chapter 1. Contents

behave Documentation, Release 1.2.6

• Passing a URL to an external resource that should be used in the tests

• Turning off cleanup mechanisms implemented in environment hooks, for debugging purposes.

Type Converters

The userdata object provides basic support for “type conversion on demand”, similar to the configparser
module. The following type conversion methods are provided:

• Userdata.getint(name, default=0)

• Userdata.getfloat(name, default=0.0)

• Userdata.getbool(name, default=False)

• Userdata.getas(convert_func, name, default=None, ...)

Type conversion may raise a ValueError exception if the conversion fails.

The following example shows how the type converter functions for integers are used:

-- FILE: features/environment.py
def before_all(context):

userdata = context.config.userdata
server_name = userdata.get("server", "beatrix")
int_number = userdata.getint("port", 80)
bool_answer = userdata.getbool("are_you_sure", True)
float_number = userdata.getfloat("temperature_threshold", 50.0)
...

Advanced Cases

The last section described the basic use cases of userdata. For more complicated cases, it is better to provide your
own configuration setup in the before_all() hook.

This section describes how to load a JSON configuration file and store its data in the userdata dictionary.

-- FILE: features/environment.py
import json
import os.path

def before_all(context):
"""Load and update userdata from JSON configuration file."""
userdata = context.config.userdata
configfile = userdata.get("configfile", "userconfig.json")
if os.path.exists(configfile):

assert configfile.endswith(".json")
more_userdata = json.load(open(configfile))
context.config.update_userdata(more_userdata)
-- NOTE: Reapplies userdata_defines from command-line, too.

Provide the file “userconfig.json” with:

{
"browser": "firefox",
"server": "asterix",
"count": 42,
"cleanup": true

}

Other advanced use cases:

1.12. New and Noteworthy 69

https://docs.python.org/3/library/configparser.html#module-configparser

behave Documentation, Release 1.2.6

• support configuration profiles via cmdline “. . . -D PROFILE=xxx . . . ” (uses profile-specific configuration
file or profile-specific config section)

• provide test stage specific configuration data

Active Tags

Since behave 1.2.5a1

Active tags are used when it is necessary to decide at runtime which features or scenarios should run (and which
should be skipped). The runtime decision is based on which:

• platform the tests run (like: Windows, Linux, MACOSX, . . .)

• runtime environment resources are available (by querying the “testbed”)

• runtime environment resources should be used (via userdata or . . .)

Therefore, for active tags it is decided at runtime if a tag is enabled or disabled. The runtime decision logic
excludes features/scenarios with disabled active tags before they are run.

Note: The active tag mechanism is applied after the normal tag filtering that is configured on the command-line.

The active tag mechanism uses the ActiveTagMatcher for its core functionality.

Active Tag Logic

• A (positive) active tag is enabled, if its value matches the current value of its category.

• A negated active tag (starting with “not”) is enabled, if its value does not match the current value of its
category.

• A sequence of active tags is enabled, if all its active tags are enabled (logical-and operation).

Active Tag Schema

The following two tag schemas are supported for active tags (by default).

Dialect 1:

• @active.with_{category}={value}

• @not_active.with_{category}={value}

Dialect 2:

• @use.with_{category}={value}

• @not.with_{category}={value}

• @only.with_{category}={value}

Example 1

Assuming you have the feature file where:

• scenario “Alice” should only run when browser “Chrome” is used

• scenario “Bob” should only run when browser “Safari” is used

70 Chapter 1. Contents

behave Documentation, Release 1.2.6

-- FILE: features/alice.feature
Feature:

@use.with_browser=chrome
Scenario: Alice (Run only with Browser Chrome)

Given I do something
...

@use.with_browser=safari
Scenario: Bob (Run only with Browser Safari)

Given I do something else
...

-- FILE: features/environment.py
EXAMPLE: ACTIVE TAGS, exclude scenario from run-set at runtime.
NOTE: ActiveTagMatcher implements the runtime decision logic.
from behave.tag_matcher import ActiveTagMatcher
import os
import sys

active_tag_value_provider = {
"browser": "chrome"

}
active_tag_matcher = ActiveTagMatcher(active_tag_value_provider)

def before_all(context):
-- SETUP ACTIVE-TAG MATCHER VALUE(s):
active_tag_value_provider["browser"] = os.environ.get("BROWSER", "chrome")

def before_scenario(context, scenario):
-- NOTE: scenario.effective_tags := scenario.tags + feature.tags
if active_tag_matcher.should_exclude_with(scenario.effective_tags):

-- NOTE: Exclude any with @use.with_browser=<other_browser>
scenario.skip(reason="DISABLED ACTIVE-TAG")

Note: By using this mechanism, the @use.with_browser=* tags become active tags. The runtime decision
logic decides when these tags are enabled or disabled (and uses them to exclude their scenario/feature).

Example 2

Assuming you have scenarios with the following runtime conditions:

• Run scenario Alice only on Windows OS

• Run scenario Bob only with browser Chrome

-- FILE: features/alice.feature
TAG SCHEMA: @use.with_{category}={value}, ...
Feature:

@use.with_os=win32
Scenario: Alice (Run only on Windows)
Given I do something
...

@use.with_browser=chrome
Scenario: Bob (Run only with Web-Browser Chrome)
Given I do something else
...

1.12. New and Noteworthy 71

behave Documentation, Release 1.2.6

-- FILE: features/environment.py
from behave.tag_matcher import ActiveTagMatcher
import sys

-- MATCHES ANY TAGS: @use.with_{category}={value}
NOTE: active_tag_value_provider provides category values for active tags.
active_tag_value_provider = {

"browser": os.environ.get("BEHAVE_BROWSER", "chrome"),
"os": sys.platform,

}
active_tag_matcher = ActiveTagMatcher(active_tag_value_provider)

-- BETTER USE: from behave.tag_matcher import setup_active_tag_values
def setup_active_tag_values(active_tag_values, data):

for category in active_tag_values.keys():
if category in data:

active_tag_values[category] = data[category]

def before_all(context):
-- SETUP ACTIVE-TAG MATCHER (with userdata):
USE: behave -D browser=safari ...
setup_active_tag_values(active_tag_value_provider, context.config.userdata)

def before_feature(context, feature):
if active_tag_matcher.should_exclude_with(feature.tags):

feature.skip(reason="DISABLED ACTIVE-TAG")

def before_scenario(context, scenario):
if active_tag_matcher.should_exclude_with(scenario.effective_tags):

scenario.skip("DISABLED ACTIVE-TAG")

By using the userdata mechanism, you can now define on command-line which browser should be used when you
run behave.

-- SHELL: Run behave with browser=safari, ... by using userdata.
TEST VARIANT 1: Run tests with browser=safari
behave -D browser=safari features/

TEST VARIANT 2: Run tests with browser=chrome
behave -D browser=chrome features/

Note: Unknown categories, missing in the active_tag_value_provider are ignored.

User-defined Formatters

Since behave 1.2.5a1

Behave formatters are a typical candidate for an extension point. You often need another formatter that provides
the desired output format for a test-run.

Therefore, behave supports now formatters as extension point (or plugin). It is now possible to use own, user-
defined formatters in two ways:

• Use formatter class (as “scoped class name”) as --format option value

• Register own formatters by name in behave’s configuration file

Note: Scoped class name (schema):

• my.module:MyClass (preferred)

72 Chapter 1. Contents

behave Documentation, Release 1.2.6

• my.module::MyClass (alternative; with double colon as separator)

User-defined Formatter on Command-line

Just use the formatter class (as “scoped class name”) on the command-line as value for the -format option (short
option: -f):

behave -f my.own_module:SimpleFormatter ...
behave -f behave.formatter.plain:PlainFormatter ...

-- FILE: my/own_module.py
(or installed as Python module: my.own_module)
from behave.formatter.base import Formatter

class SimpleFormatter(Formatter):
description = "A very simple NULL formatter"

Register User-defined Formatter by Name

It is also possible to extend behave’s built-in formatters by registering one or more user-defined formatters by
name in the configuration file:

-- FILE: behave.ini
[behave.formatters]
foo = behave_contrib.formatter.foo:FooFormatter
bar = behave_contrib.formatter.bar:BarFormatter

-- FILE: behave_contrib/formatter/foo.py
from behave.formatter.base import Formatter

class FooFormatter(Formatter):
description = "A FOO formatter"
...

Now you can use the name for any registered, user-defined formatter:

-- NOTE: Use FooFormatter that was registered by name "foo".
behave -f foo ...

1.12.3 Noteworthy in Version 1.2.4

Diagnostics: Start Debugger on Error

Since behave 1.2.4a1

See also Debug-on-Error (in Case of Step Failures) .

1.13 More Information about Behave

1.13.1 Tutorials

For new users, that want to read, understand and explore the concepts in Gherkin and behave (after reading the
behave documentation):

1.13. More Information about Behave 73

https://github.com/behave/behave

behave Documentation, Release 1.2.6

• “Behave by Example” (on github)

The following small tutorials provide an introduction how you use behave in a specific testing domain:

• Phillip Johnson, Getting Started with Behavior Testing in Python with Behave

• Bdd with Python, Behave and WebDriver

• Wayne Witzel III, Using Behave with Pyramid, 2014-01-10.

Warning: A word of caution if you are new to “behaviour-driven development” (BDD). In general, you
want to avoid “user interface” (UI) details in your scenarios, because they describe how something is imple-
mented (in this case the UI itself), like:

• press this button

• then enter this text into the text field

• . . .

In BDD (or testing in general), you should describe what should be done (meaning the intention). This will
make your scenarios much more robust and stable because you can change the underlying implementation of:

• the “system under test” (SUT) or

• the test automation layer, that interacts with the SUT.

without changing the scenarios.

1.13.2 Books

Behave is covered in the following books:

[TDD-Python] Harry Percival, Test-Driven Web Development with Python, O’Reilly, June 2014,
Appendix E: BDD (covers behave)

1.13.3 Presentation Videos

• Benno Rice: Making Your Application Behave (30min), 2012-08-12, PyCon Australia.

• Selenium: First behave python tuorial with selenium (8min), 2015-01-28, http://www.seleniumframework.
com/python-basic/first-behave-gherkin/

• Jessica Ingrasselino: Automation with Python and Behave (67min), 2015-12-16

• Selenium Python Webdriver Tutorial - Behave (BDD) (14min), 2016-01-21

1.13.4 Tool-oriented Tutorials

JetBrains PyCharm:

• Blog: In-Depth Screencast on Testing (2016-04-11; video offset=2:10min)

• Docs: BDD Testing Framework Support in PyCharm 2016.1

1.13.5 Find more Information

See also:

• google:python-behave examples

• google:python-behave tutorials

74 Chapter 1. Contents

http://behave.github.io/behave.example/
https://github.com/behave/behave.example
https://github.com/behave/behave
https://semaphoreci.com/community/tutorials/getting-started-with-behavior-testing-in-python-with-behave
https://testingbot.com/support/getting-started/behave.html
https://www.safaribooksonline.com/blog/2014/01/10/using-behave-with-pyramid/
https://github.com/behave/behave
http://chimera.labs.oreilly.com/books/1234000000754
http://chimera.labs.oreilly.com/books/1234000000754/ape.html
https://www.youtube.com/watch?v=u8BOKuNkmhg
https://www.youtube.com/watch?v=D24_QrGUCFk
http://www.seleniumframework.com/python-basic/first-behave-gherkin/
http://www.seleniumframework.com/python-basic/first-behave-gherkin/
https://www.youtube.com/watch?v=e78c7h6DRDQ
https://www.youtube.com/watch?v=mextSo0UExc
https://blog.jetbrains.com/pycharm/2016/04/in-depth-screencast-on-testing/
https://www.jetbrains.com/help/pycharm/2016.1/bdd-testing-framework.html
https://www.google.com/?q=python-behave%20examples
https://www.google.com/?q=python-behave%20tutorials

behave Documentation, Release 1.2.6

• google:python-behave videos

1.14 Appendix

Contents:

1.14.1 Formatters and Reporters

behave provides 2 different concepts for reporting results of a test run:

• formatters

• reporters

A slightly different interface is provided for each “formatter” concept. The Formatter is informed about each
step that is taken. The Reporter has a more coarse-grained API.

Reporters

The following reporters are currently supported:

Name Description
junit Provides JUnit XML-like output.
summary Provides a summary of the test run.

Formatters

The following formatters are currently supported:

Name Mode Description
help normal Shows all registered formatters.
json normal JSON dump of test run
json.pretty normal JSON dump of test run (human readable)
plain normal Very basic formatter with maximum compatibility
pretty normal Standard colourised pretty formatter
progress normal Shows dotted progress for each executed scenario.
progress2 normal Shows dotted progress for each executed step.
progress3 normal Shows detailed progress for each step of a scenario.
rerun normal Emits scenario file locations of failing scenarios
sphinx.steps dry-run Generate sphinx-based documentation for step definitions.
steps dry-run Shows step definitions (step implementations).
steps.doc dry-run Shows documentation for step definitions.
steps.usage dry-run Shows how step definitions are used by steps (in feature files).
tags dry-run Shows tags (and how often they are used).
tags.location dry-run Shows tags and the location where they are used.

Note: You can use more than one formatter during a test run. But in general you have only one formatter that
writes to stdout.

The “Mode” column indicates if a formatter is intended to be used in dry-run (--dry-run command-line option)
or normal mode.

1.14. Appendix 75

https://www.google.com/?q=python-behave%20videos
https://pypi.python.org/pypi/behave

behave Documentation, Release 1.2.6

User-Defined Formatters

Behave allows you to provide your own formatter (class):

-- USE: Formatter class "Json2Formatter" in python module "foo.bar"
NOTE: Formatter must be importable from python search path.
behave -f foo.bar:Json2Formatter ...

The usage of a user-defined formatter can be simplified by providing an alias name for it in the configuration file:

-- FILE: behave.ini
ALIAS SUPPORTS: behave -f json2 ...
NOTE: Formatter aliases may override builtin formatters.
[behave.formatters]
json2 = foo.bar:Json2Formatter

If your formatter can be configured, you should use the userdata concept to provide them. The formatter should
use the attribute schema:

-- FILE: behave.ini
SCHEMA: behave.formatter.<FORMATTER_NAME>.<ATTRIBUTE_NAME>
[behave.userdata]
behave.formatter.json2.use_pretty = true

-- SUPPORTS ALSO:
behave -f json2 -D behave.formatter.json2.use_pretty ...

More Formatters

The following formatters are currently known:

Name Description
allure allure-behave, an Allure formatter for behave: allure_behave.

formatter:AllureFormatter
teamc-
ity

behave-teamcity, a formatter for Jetbrains TeamCity CI testruns with behave.

-- FILE: behave.ini
FORMATTER ALIASES: behave -f allure ...
[behave.formatters]
allure = allure_behave.formatter:AllureFormatter
teamcity = behave_teamcity:TeamcityFormatter

1.14.2 Context Attributes

A context object (Context) is handed to

• step definitions (step implementations)

• behave hooks (before_all(), before_feature(), . . . , after_all())

Behave Attributes

The behave runner assigns a number of attributes to the context object during a test run.

76 Chapter 1. Contents

https://pypi.python.org/pypi/allure-behave
https://pypi.python.org/pypi/behave-teamcity
https://pypi.python.org/pypi/behave

behave Documentation, Release 1.2.6

Attribute
Name

Layer Type Description

config test run Configuration Configuration that is used.
aborted test run bool Set to true if test run is aborted by the user.
failed test run bool Set to true if a step fails.
feature feature Feature Current feature.
tags feature, sce-

nario
list<Tag> Effective tags of current feature, scenario, scenario

outline.
active_outline scenario

outline
Row Current row in a scenario outline (in examples table).

scenario scenario Scenario Current scenario.
log_capture scenario LoggingCapture If logging capture is enabled.
stdout_capture scenario StringIO If stdout capture is enabled.
stderr_capture scenario StringIO If stderr capture is enabled.
table step Table Contains step’s table, otherwise None.
text step String Contains step’s multi-line text (unicode), otherwise

None.

Note: Behave attributes in the context object should not be modified by a user. See Context class description
for more details.

User Attributes

A user can assign (or modify) own attributes to the context object. But these attributes will be removed again from
the context object depending where these attributes are defined.

Kind Assign Location Lifecycle Layer (Scope)
Hook before_all() test run
Hook after_all() test run
Hook before_tags() feature or scenario
Hook after_tags() feature or scenario
Hook before_feature() feature
Hook after_feature() feature
Hook before_scenario() scenario
Hook after_scenario() scenario
Hook before_step() scenario
Hook after_step() scenario
Step Step definition scenario

1.14.3 Predefined Data Types in parse

behave uses the parse module (inverse of Python string.format) under the hoods to parse parameters in step defi-
nitions. This leads to rather simple and readable parse expressions for step parameters.

-- FILE: features/steps/type_transform_example_steps.py
from behave import given

@given('I have {number:d} friends') #< Convert 'number' into int type.
def step_given_i_have_number_friends(context, number):

assert number > 0
...

1.14. Appendix 77

https://pypi.python.org/pypi/behave
https://pypi.python.org/pypi/parse
https://docs.python.org/2/library/string.html#format-string-syntax

behave Documentation, Release 1.2.6

Therefore, the following parse types are already supported in step definitions without registration of any
user-defined type:

Type Characters Matched Output Type
w Letters and underscore str
W Non-letter and underscore str
s Whitespace str
S Non-whitespace str
d Digits (effectively integer numbers) int
D Non-digit str
n Numbers with thousands separators (, or .) int
% Percentage (converted to value/100.0) float
f Fixed-point numbers float
e Floating-point numbers with exponent e.g. 1.1e-10, NAN (all case insensitive) float
g General number format (either d, f or e) float
b Binary numbers int
o Octal numbers int
x Hexadecimal numbers (lower and upper case) int
ti ISO 8601 format date/time e.g. 1972-01-20T10:21:36Z datetime
te RFC2822 e-mail format date/time e.g. Mon, 20 Jan 1972 10:21:36 +1000 datetime
tg Global (day/month) format date/time e.g. 20/1/1972 10:21:36 AM +1:00 datetime
ta US (month/day) format date/time e.g. 1/20/1972 10:21:36 PM +10:30 datetime
tc ctime() format date/time e.g. Sun Sep 16 01:03:52 1973 datetime
th HTTP log format date/time e.g. 21/Nov/2011:00:07:11 +0000 datetime
tt Time e.g. 10:21:36 PM -5:30 time

1.14.4 Regular Expressions

The following tables provide a overview of the regular expressions syntax. See also Python regular expressions
description in the Python re module.

Special Characters Description
. Matches any character (dot).
^ “^. . . ”, matches start-of-string (caret).
$ “. . . $”, matches end-of-string (dollar sign).
| “A|B”, matches “A” or “B”.
\ Escape character.
\. EXAMPLE: Matches character ‘.’ (dot).
\\ EXAMPLE: Matches character ‘\’ (backslash).

To select or match characters from a special set of characters, a character set must be defined.

Character sets Description
[...] Define a character set, like [A-Za-z].
\d Matches digit character: [0-9]
\D Matches non-digit character.
\s Matches whitespace character: [\t\n\r\f\v]
\S Matches non-whitespace character
\w Matches alphanumeric character: [a-zA-Z0-9_]
\W Matches non-alphanumeric character.

A text part must be group to extract it as part (parameter).

78 Chapter 1. Contents

https://en.wikipedia.org/wiki/Regular_expression
https://docs.python.org/2/library/re.html#module-re
https://docs.python.org/2/library/re.html#module-re

behave Documentation, Release 1.2.6

Grouping Description
(...) Group a regular expression pattern (anonymous group).
\number Matches text of earlier group by index, like: “\1”.
(?P<name>...) Matches pattern and stores it in parameter “name”.
(?P=name) Match whatever text was matched by earlier group “name”.
(?:...) Matches pattern, but does non capture any text.
(?#...) Comment (is ignored), describes pattern details.

If a group, character or character set should be repeated several times, it is necessary to specify the cardinality of
the regular expression pattern.

Cardinality Description
? Pattern with cardinality 0..1: optional part (question mark).
* Pattern with cardinality zero or more, 0.. (asterisk).
+ Pattern with cardinality one or more, 1.. (plus sign).
{m} Matches m repetitions of a pattern.
{m,n} Matches from m to n repetitions of a pattern.
[A-Za-z]+ EXAMPLE: Matches one or more alphabetical characters.

1.14.5 Testing Domains

Behave and other BDD frameworks allow you to provide step libraries to reuse step definitions in similar projects
that address the same problem domain.

Step Libraries

Support of the following testing domains is currently known:

Testing Domain Name Description
Command-line behave4cmd Test command-line tools, like behave, etc. (coming soon).
Web Apps behave-django Test Django Web apps with behave (solution 1).
Web Apps django-behave Test Django Web apps with behave (solution 2).
Web, SMS, . . . behaving Test Web Apps, Email, SMS, Personas (step library).

Step Usage Examples

This examples show how you can use behave for testing a specific problem domain. This examples are normally
not a full-blown step library (that can be reused), but give you an example (or prototype), how the problem can be
solved.

Testing Domain Name Description
GUI Squish test Use Squish and Behave for GUI testing (cross-platform).
Robot Control behave4poppy Use behave to control a robot via pypot.
Web pyramid_behave Use behave to test pyramid.
Web pycabara-tutorial Use pycabara (with behave and Selenium).

See also:

• google-search: behave python example

1.14. Appendix 79

https://github.com/behave/behave4cmd
https://github.com/behave/behave-django
https://github.com/django-behave/django-behave
https://github.com/ggozad/behaving
https://github.com/behave/behave
https://www.froglogic.com/squish/
https://kb.froglogic.com/display/KB/BDD+with+Squish+and+Behave
https://github.com/chbrun/behave4poppy
https://github.com/poppy-project/pypot
https://github.com/wwitzel3/pyramid_behave
https://blog.safaribooksonline.com/2014/01/10/using-behave-with-pyramid/
https://github.com/excellaco/pycabara-tutorial
https://github.com/behave/behave
http://docs.seleniumhq.org/
https://www.google.com/?q=behave%20python%20example

behave Documentation, Release 1.2.6

1.14.6 Behave Ecosystem

The following tools and extensions try to simplify the work with behave.

See also:

• Are there any non-developer tools for writing Gherkin files ? (*.feature files)

Behave related Projects to Github

Use the following URL to find behave related projects on Github:

• https://github.com/topics/behave?l=python

IDE Plugins

IDE Plugin Description
PyCharm PyCharm BDD PyCharm 4 (Professional edition) has built-in support for behave.
PyCharm Gherkin PyCharm/IDEA editor support for Gherkin.
Eclipse Cucumber-Eclipse Plugin contains editor support for Gherkin.
VisualStudio cuke4vs VisualStudio plugin with editor support for Gherkin.

Editors and Editor Plugins

Editor Plugin Description
gedit gedit_behave gedit plugin for jumping between feature and step files.
Gherkin editor — An editor for writing *.feature files.
Notepad++ NP++ gherkin Notepad++ editor syntax highlighting for Gherkin.
Sublime Text Cucumber (ST Bundle) Gherkin editor support, table formatting.
Sublime Text Behave Step Finder Helps to navigate to steps in behave.
vim vim-behave vim plugin: Port of vim-cucumber to Python behave.

Tools

Tool Description
cucu-
tags

Generate ctags-like information (cross-reference index) for Gherkin feature files and behave step
definitions.

1.14.7 Software that Enhances behave

• Mock

• nose.tools and nose.twistedtools

• mechanize for pretending to be a browser

• selenium webdriver for actually driving a browser

• wsgi_intercept for providing more easily testable WSGI servers

• BeautifulSoup, lxml and html5lib for parsing HTML

• . . .

See also:

80 Chapter 1. Contents

https://github.com/behave/behave
https://stackoverflow.com/questions/8275026/are-there-any-non-developer-tools-to-edit-gherkin-files
https://github.com/behave/behave
https://github.com/topics/behave?l=python
https://www.jetbrains.com/pycharm/
https://blog.jetbrains.com/pycharm/2014/09/feature-spotlight-behavior-driven-development-in-pycharm/
https://github.com/behave/behave
https://www.jetbrains.com/pycharm/
http://www.eclipse.org/
http://cucumber.github.io/cucumber-eclipse/
https://www.visualstudio.com/
https://github.com/henritersteeg/cuke4vs
https://wiki.gnome.org/Apps/Gedit
https://gitlab.com/mcepl/gedit_behave
https://wiki.gnome.org/Apps/Gedit
http://gherkineditor.codeplex.com
https://notepad-plus-plus.org/
http://productive.me/develop/cucumbergherkin-syntax-highlighting-for-notepad
http://www.sublimetext.com
https://packagecontrol.io/packages/Cucumber
http://www.sublimetext.com
https://packagecontrol.io/packages/Behave%20Step%20Finder
http://www.vim.org/
https://github.com/rooprob/vim-behave
http://www.vim.org/
https://github.com/tpope/vim-cucumber
https://github.com/behave/behave
https://pypi.python.org/pypi/cucutags
https://pypi.python.org/pypi/cucutags
http://ctags.sourceforge.net/

behave Documentation, Release 1.2.6

• behave.example: Behave Examples and Tutorials (HTML)

• Peter Parente: BDD and Behave (tutorial)

1.14. Appendix 81

https://github.com/behave/behave.example
http://behave.github.io/behave.example/
http://tott-meetup.readthedocs.io/en/latest/sessions/behave.html

behave Documentation, Release 1.2.6

82 Chapter 1. Contents

CHAPTER 2

Indices and tables

• genindex

• modindex

• search

83

behave Documentation, Release 1.2.6

84 Chapter 2. Indices and tables

Index

Symbols
-capture

command line option, 25
-capture-stderr

command line option, 25
-color

command line option, 24
-junit

command line option, 24
-junit-directory

command line option, 24
-lang

command line option, 26
-lang-help

command line option, 26
-lang-list

command line option, 26
-logcapture

command line option, 25
-logging-clear-handlers

command line option, 25
-logging-datefmt

command line option, 25
-logging-filter

command line option, 25
-logging-format

command line option, 25
-logging-level

command line option, 25
-multiline

command line option, 25
-no-capture

command line option, 25
-no-capture-stderr

command line option, 25
-no-junit

command line option, 24
-no-logcapture

command line option, 25
-no-snippets

command line option, 24
-no-summary

command line option, 25

-show-skipped
command line option, 24

-show-source
command line option, 26

-show-timings
command line option, 26

-snippets
command line option, 24

-stage
command line option, 26

-steps-catalog
command line option, 24

-stop
command line option, 26

-summary
command line option, 25

-tags-help
command line option, 26

-version
command line option, 26

-D, -define
command line option, 24

-T, -no-timings
command line option, 26

-c, -no-color
command line option, 24

-d, -dry-run
command line option, 24

-e, -exclude
command line option, 24

-f, -format
command line option, 24

-i, -include
command line option, 24

-k, -no-skipped
command line option, 24

-m, -no-multiline
command line option, 25

-n, -name
command line option, 25

-o, -outfile
command line option, 25

-q, -quiet
command line option, 25

85

behave Documentation, Release 1.2.6

-s, -no-source
command line option, 26

-t, -tags
command line option, 26

-v, -verbose
command line option, 26

-w, -wip
command line option, 26

-x, -expand
command line option, 26

@active.with_{category}={value}
active tag schema (dialect 1), 70

@not.with_{category}={value}
active tag schema (dialect 2), 70

@not_active.with_{category}={value}
active tag schema (dialect 1), 70

@only.with_{category}={value}
active tag schema (dialect 2), 70

@use.with_{category}={value}
active tag schema (dialect 2), 70

A
abandon() (behave.log_capture.LoggingCapture

method), 45
aborted (behave.runner.Context attribute), 35
Active Tag Logic, 70
Active Tag Schema, 70
active tag schema (dialect 1)

@active.with_{category}={value}, 70
@not_active.with_{category}={value},

70
active tag schema (dialect 2)

@not.with_{category}={value}, 70
@only.with_{category}={value}, 70
@use.with_{category}={value}, 70

Active Tags, 70
active_outline (behave.runner.Context attribute),

35
add_cleanup() (behave.runner.Context method),

35
any_errors() (be-

have.log_capture.LoggingCapture method),
45

Argument (class in behave.model_core), 32
arguments (behave.matchers.Match attribute), 32

B
background (behave.model.Feature attribute), 40
Background (class in behave.model), 40
buffer (behave.log_capture.LoggingCapture at-

tribute), 45

C
capture() (in module behave.log_capture), 45
cells (behave.model.Row attribute), 44
check_match() (behave.matchers.Matcher

method), 32
command line option

-capture, 25
-capture-stderr, 25
-color, 24
-junit, 24
-junit-directory, 24
-lang, 26
-lang-help, 26
-lang-list, 26
-logcapture, 25
-logging-clear-handlers, 25
-logging-datefmt, 25
-logging-filter, 25
-logging-format, 25
-logging-level, 25
-multiline, 25
-no-capture, 25
-no-capture-stderr, 25
-no-junit, 24
-no-logcapture, 25
-no-snippets, 24
-no-summary, 25
-show-skipped, 24
-show-source, 26
-show-timings, 26
-snippets, 24
-stage, 26
-steps-catalog, 24
-stop, 26
-summary, 25
-tags-help, 26
-version, 26
-D, -define, 24
-T, -no-timings, 26
-c, -no-color, 24
-d, -dry-run, 24
-e, -exclude, 24
-f, -format, 24
-i, -include, 24
-k, -no-skipped, 24
-m, -no-multiline, 25
-n, -name, 25
-o, -outfile, 25
-q, -quiet, 25
-s, -no-source, 26
-t, -tags, 26
-v, -verbose, 26
-w, -wip, 26
-x, -expand, 26

config (behave.runner.Context attribute), 35
configuration param

color, 27
default_format, 28
default_tags, 29
dry_run, 27
exclude_re, 28
expand, 29
format, 28
include_re, 28

86 Index

behave Documentation, Release 1.2.6

junit, 28
junit_directory, 28
lang, 29
log_capture, 28
logging_clear_handlers, 29
logging_datefmt, 28
logging_filter, 29
logging_format, 28
logging_level, 28
name, 28
outfiles, 29
paths, 29
quiet, 29
scenario_outline_annotation_schema,

28
show_multiline, 28
show_skipped, 28
show_snippets, 28
show_source, 29
show_timings, 29
stage, 29
stderr_capture, 28
stdout_capture, 28
steps_catalog, 28
stop, 29
summary, 29
tags, 29
userdata_defines, 27
verbose, 29
wip, 29

content_type (behave.model.Text attribute), 44
Context (class in behave.runner), 34
ContextMaskWarning (class in behave.runner), 36

D
debug-on-error, 12
describe() (behave.matchers.Matcher method), 32
description (behave.model.Feature attribute), 40
description (behave.model.Scenario attribute), 41
description (behave.model.ScenarioOutline at-

tribute), 42
duration (behave.model.Background attribute), 41
duration (behave.model.Feature attribute), 40
duration (behave.model.Scenario attribute), 41
duration (behave.model.ScenarioOutline attribute),

42
duration (behave.model.Step attribute), 43

E
end (behave.model_core.Argument attribute), 32
error_message (behave.model.Step attribute), 43
examples (behave.model.ScenarioOutline attribute),

42
Examples (class in behave.model), 42
exclude from test run

Feature, 66
Scenario, 66

execute_steps() (behave.runner.Context
method), 35

F
failed (behave.runner.Context attribute), 35
Feature

exclude from test run, 66
feature (behave.model.Scenario attribute), 41
feature (behave.model.ScenarioOutline attribute),

42
feature (behave.runner.Context attribute), 34
Feature (class in behave.model), 40
file location

ScenarioOutline, 63
filename (behave.model.Background attribute), 41
filename (behave.model.Examples attribute), 43
filename (behave.model.Feature attribute), 40
filename (behave.model.Scenario attribute), 42
filename (behave.model.ScenarioOutline attribute),

42
filename (behave.model.Step attribute), 44
find_event() (be-

have.log_capture.LoggingCapture method),
45

fixture() (in module behave.fixture), 36
flush() (behave.log_capture.LoggingCapture

method), 45
func (behave.matchers.Match attribute), 32
func (behave.matchers.Matcher attribute), 32

G
Gherkin parser

tagged examples, 56

H
headings (behave.model.Row attribute), 44
headings (behave.model.Table attribute), 44
hook_failed (behave.model.Feature attribute), 40
hook_failed (behave.model.Scenario attribute), 41
hook_failed (behave.model.Step attribute), 43

I
inveigle() (behave.log_capture.LoggingCapture

method), 45

K
keyword (behave.model.Background attribute), 41
keyword (behave.model.Examples attribute), 43
keyword (behave.model.Feature attribute), 40
keyword (behave.model.Scenario attribute), 41
keyword (behave.model.ScenarioOutline attribute),

42
keyword (behave.model.Step attribute), 43

L
language (behave.model.Feature attribute), 40
line (behave.model.Background attribute), 41

Index 87

behave Documentation, Release 1.2.6

line (behave.model.Examples attribute), 43
line (behave.model.Feature attribute), 40
line (behave.model.Scenario attribute), 42
line (behave.model.ScenarioOutline attribute), 42
line (behave.model.Step attribute), 44
log_capture (behave.runner.Context attribute), 35
LoggingCapture (class in behave.log_capture), 45

M
Match (class in behave.matchers), 32
Matcher (class in behave.matchers), 32

N
name (behave.model.Background attribute), 41
name (behave.model.Examples attribute), 43
name (behave.model.Feature attribute), 40
name (behave.model.Scenario attribute), 41
name (behave.model.ScenarioOutline attribute), 42
name (behave.model.Step attribute), 43
name (behave.model_core.Argument attribute), 32

O
original (behave.model_core.Argument attribute),

32

P
pattern (behave.matchers.Matcher attribute), 32

R
regex_pattern (behave.matchers.Matcher at-

tribute), 32
regexp, 78
register_type() (in module behave), 31
regular expressions, 78
Row (class in behave.model), 44
rows (behave.model.Table attribute), 44

S
Scenario

exclude from test run, 66
scenario (behave.runner.Context attribute), 34
Scenario (class in behave.model), 41
ScenarioOutline

file location, 63
name annotation, 63
name with placeholders, 64
select-group-by-name, 66
select-group-by-tag, 66
tagged examples, 56
tags with placeholders, 65

ScenarioOutline (class in behave.model), 42
scenarios (behave.model.Feature attribute), 40
Stage, 67

Test Stage, 67
start (behave.model_core.Argument attribute), 32
status (behave.model.Feature attribute), 40
status (behave.model.Scenario attribute), 41

status (behave.model.ScenarioOutline attribute), 42
status (behave.model.Step attribute), 43
stderr_capture (behave.runner.Context attribute),

35
stdout_capture (behave.runner.Context attribute),

35
Step (class in behave.model), 43
step_type (behave.model.Step attribute), 43
steps (behave.model.Background attribute), 41
steps (behave.model.Scenario attribute), 41
steps (behave.model.ScenarioOutline attribute), 42

T
table (behave.model.Examples attribute), 43
table (behave.model.Step attribute), 43
table (behave.runner.Context attribute), 35
Table (class in behave.model), 44
Tag (class in behave.model), 43
tagged examples

Gherkin parser, 56
ScenarioOutline, 56

tags (behave.model.Feature attribute), 40
tags (behave.model.Scenario attribute), 41
tags (behave.model.ScenarioOutline attribute), 42
tags (behave.runner.Context attribute), 34
tags with placeholders

ScenarioOutline, 65
Test Stage

Stage, 67
text (behave.model.Step attribute), 43
text (behave.runner.Context attribute), 35
Text (class in behave.model), 44

U
use_composite_fixture_with() (in module

behave.fixture), 38
use_fixture() (in module behave.fixture), 36
use_fixture_by_tag() (in module be-

have.fixture), 37
use_step_matcher() (in module behave), 31
use_with_user_mode() (behave.runner.Context

method), 36
user-specific configuration data

userdata, 68
userdata, 68

user-specific configuration data,
68

V
value (behave.model.Text attribute), 44
value (behave.model_core.Argument attribute), 32

88 Index

	Contents
	Installation
	Tutorial
	Behavior Driven Development
	Feature Testing Setup
	Using behave
	Behave API Reference
	Fixtures
	Django Test Integration
	Flask Test Integration
	Practical Tips on Testing
	Comparison With Other Tools
	New and Noteworthy
	More Information about Behave
	Appendix

	Indices and tables
	Index

